Operating Systems Research

Questions Answered in this Lecture:

 What are the current open problems in OS research?

 What are the hot topics in the research community?

 What are the newest trends in industry?

 What does your professor do when he’s not filling your head with knowledge?

ILLINOIS INSTITUTE\.’-’;"
OF TECHNOLOGY

Announcements

* Fill out course survey!
* P4B due tomorrow (Friday)
* Final exam will be posted Monday morning

ILLINOIS INSTITUTE\.’-’;"
OF TECHNOLOGY

Scale, Scale, Scale

* Typical DS problems persist

* Edge computing: push stuff out closer to users (started with cloudlets,
fog computing).

* Disaggregated Resources

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Scaling file systems

ILLINOIS INSTITUTEﬁ&.
OF TECHNOLOGY

SOSP ‘19

Scaling a file system to many cores
using an operation log

Srivatsa S. Bhat,” Rasha Eqbal,i Austin T. Clements,?

M. Frans Kaashoek, Nickolai Zeldovich
MIT CSAIL

ABSTRACT

It is challenging to simultaneously achieve multicore scala-
bility and high disk throughput in a file system. For exam-
ple, even for commutative operations like creating different
files in the same directory, current file systems introduce
cache-line conflicts when updating an in-memory copy of
the on-disk directory block, which limits scalability.
ScALEFS is a novel file system design that decouples the
in-memory file system from the on-disk file system using
per-core operation logs. This design facilitates the use of
highly concurrent data structures for the in-memory repre-
sentation, which allows commutative operations to proceed
without cache conflicts and hence scale perfectly. ScALeFS

1 ti : - 1 that it dela -
0gs operations 1n a per-core log so that it can de %L%:J;Eé 450

gating updates to the disk representation (and the J:-]a
conflicts involved in doing so) until an fsync. The fsync

allow file-system-intensive applications to scale better [4,
10, 13, 23, 26, 31). This paper contributes a clean-slate file
system design that allows for good multicore scalability by
separating the in-memory file system from the on-disk file
system, and describes a prototype file system, SCALEFS, that
implements this design.

The main goal achieved by SCALEFS is multicore scala-
bility. ScALEFS scales well for a number of workloads on an
80-core machine, but even more importantly, the ScaLeFS
implementation is conflict-free for almost all commutative
operations [10]. Conflict freedom allows ScALEFS to take
advantage of disjoint-access parallelism [1, 20] and suggests
that ScALEFS will continue to scale even for workloads or
machines we have not yet measured.

In addition to scalability, ScALEFS must also satisfy two
standard file system constraints: crash safety (meaning that

Scaling important apps

ILLINOIS INSTITUTEﬁ&.
OF TECHNOLOGY

SOSP ‘19

SVE: Distributed Video Processing at Facebook Scale

Qi Huang!, Petchean Ang!, Peter Knowles!, Tomasz Nykiel’,
laroslav Tverdokhlib!, Amit Yajurvedi’, Paul Dapolito IV?, Xifan Yan',
Maxim Bykov', Chuen Liang', Mohit Talwar’, Abhishek Mathur',
Sachin Kulkarni', Matthew Burke!*?, and Wyatt Lloyd"-**

Facebook, Inc., 2University of Southern California, *Cornell University, *Princeton University
qhuang@fb.com,wlloyd@princeton.edu

ABSTRACT

Videos are an increasingly utilized part of the experience
of the billions of people that use Facebook. These videos
must be uploaded and processed before they can be shared
and downloaded. Uploading and processing videos at our
scale, and across our many applications, brings three key
requirements: low latency to support interactive applications;
a flexible programming model for application developers
that is simple to program, enables efficient processing, and

improves reliability; and robustness to faults and overload.

This paper describes the evolution from our initial monolithic
encoding script (MES) system to our current Streaming Video
Engine (SVE) that overcomes each of the challenges. SVE
has been in production since the fall of 2015, provides lower

latency than MES, supports many diverse video applications,

and has proven to be reliable despite faults and overload.

Hale | C

1 INTRODUCTION

Processing uploaded videos is a necessary step before
they are made available for sharing. Processing includes val-
idating the uploaded file follows a video format and then
re-encoding the video into a variety of bitrates and formats.
Multiple bitrates enable clients to be able to continuously
stream videos at the highest sustainable quality under vary-
ing network conditions. Multiple formats enable support for
diverse devices with varied client releases.

There are three major requirements for our video upload-
ing and processing pipeline: provide low latency, be flexible
enough to support many applications, and be robust to faults
and overload. Uploading and processing are on the path be-
tween when a person uploads a video and when it is shared.
Lower latency means users can share their content more
quickly. Many apps and services include application-specific
video operations, such as computer vision extraction and

5 recognition. Flexibility allows us to address the ever
increasing quantity and complexity of such operations. Fail-
ure is the norm at scale and overload is inevitable due to our

Memory is Everywhere

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

OSDI ‘20 WALATID | | EVALUATED

Qnn | | g

Semeru: A Memory-Disaggregated Managed Runtime

Chenxi Wang' Haoran Ma' ShiLiu’ Yuanqi Li' Zhenyuan Ruan* Khanh Nguyen®

Michael D. Bond® Ravi Netravali'

Miryung Kim' Guoging Harry Xu'

UCLA" MIT* Texas A&M University® Ohio State University*

Abstract

Resource-disaggregated architectures have risen in popularity
for large datacenters. However, prior disaggregation systems
are designed for native applications: in addition, all of them
require applications to possess excellent locality to be effi-
ciently executed. In contrast, programs written in managed
languages are subject to periodic garbage collection (GC),
which is a typical graph workload with poor locality. Al-
though most datacenter applications are written in managed
languages, current systems are far from delivering acceptable
performance for these applications.

This paper presents Semeru, a distributed JVM that can
dramatically improve the performance of managed cloud ap-
plications in a memory-disaggregated environment. Its design
possesses three major innovations: (1) a universal Java heap,
which provides a unified abstraction of virtual memory across
CPU and memory servers and allows any legacy program
to run without modifications; (2) a distributed GC, which
offloads object tracing to memory servers so that tracing is
performed closer to data; and (3) a swap system in the OS
kernel that works with the runtime to swap page data effi-
ciently. An evaluation of Semeru on a set of widely-deployed
systems shows very promising results.

1 Introduction

The idea of resource disaggregation has recently attracted

a great deal of attention in both academia [16, 45, 49§k | C:Sr%g
C

and industry [3, 33, 39, 52, 65]. Unlike conventional data-
centers that are built with monolithic servers, each of which

vides a new OS model called splitkernel, which disseminates
traditional OS components into loosely coupled monitors,
each of which runs on a resource server. InfiniSwap [49]
is a paging system that leverages RDMA to expose mem-
ory to applications running on remote machines. FaRM [37]
is a distributed memory system that uses RDMA for both
fast messaging and data access. There also exists a body of
work [12, 28, 38, 60, 61, 64, 65, 73, 77, 94, 96. 97, 105] on
storage disaggregation.

1.1 Problems

Although RDMA provides efficient data access among remote
access techniques, fetching data from remote memory on a
memory-disaggregated architecture, is time consuming, incur-
ring microsecond-level latency that cannot be handled well
by current system techniques [20]. While various optimiza-
tions [37, 38, 49, 84, 87, 105] have been proposed to reduce
or hide fetching latency, such techniques focus on the low-
level system stack and do not consider run-time semantics of
a program, such as locality.

Improving performance for applications that exhibit good
locality is straightforward: the CPU server runs the program,
while data are located on memory servers; the CPU server has
only a small amount of memory used as a local cache' that
stores recently fetched pages. A cache miss triggers a page
fault on the CPU server, making it fetch data from the memory
ﬂﬂll hosts the requested page. Good locality reduces

isses, leading to improved application performance.
As a result, a program itself needs to possess excellent spa-

22nl] nnnsdirnee tomennnrnl 1ncanlity t he avoarntad afRrieaontlyv snnder

Dealing with complexity

* Bugs: is C the right way to go?

 [X]aaS: reduce burden of users etc
* Improvements in virtualization technology

* Verification/Correctness/Safety

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Formal) Verification of OSes is Hard

SOSP ‘19

ILLINOIS INSTITUTEﬁ&.
OF TECHNOLOGY

Hyperkernel: Push-Button Verification of an OS Kernel

Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson,
James Bornholt, Emina Torlak, and Xi Wang

University of Washington
{lukenels helgi,kaiyuanz,dgj16,bornholt,emina,xi}@cs.washington.edu

ABSTRACT

This paper describes an approach to designing, implement-
ing, and formally verifying the functional correctness of an
OS kernel, named Hyperkernel, with a high degree of proof
automation and low proof burden. We base the design of Hy-
perkernel’s interface on xvé, a Unix-like teaching operating
system. Hyperkernel introduces three key ideas to achieve
proof automation: it finitizes the kernel interface to avoid
unbounded loops or recursion: it separates kernel and user
address spaces to simplify reasoning about virtual memory;
and it performs verification at the LLVM intermediate repre-
sentation level to avoid modeling complicated C semantics.

We have verified the implementation of Hyperkernel with
the Z3 SMT solver, checking a total of 50 system calls and
other trap handlers. Experience shows that Hyperkernel can
avoid bugs similar to those found in xv6, and that the verifica-
tion of Hyperkemel can be achieved with a low proof burden.

ACM Reference Format:
Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan John-
son, James Bornholt, Emina Torlak, and Xi Wang. 2017. Hyperkernel:
Push-Button Verification of an OS Kernel. In SOSP '17: ACM SIGOPS
26th Symposium on Operating Systems Principles. ACM, Nc\\|_r ll'
NY, USA, 18 pages. https://doi.org/10.1145/3132747.3132748

- TR I IR A2 NY 1Y I A2 T

Previous research has applied formal verification to elimi-
nate entire classes of bugs within OS kernels, by constructing
a machine-checkable proof that the behavior of an imple-
mentation adheres to its specification 25, 34, 69]. But these
impressive achievements come with a non-trivial cost. For
example, the functional correctness proof of the seL4 kernel
took roughly 11 person years for 10,000 lines of C code [35].

This paper explores a push-button approach to building a
provably correct OS kernel with a low proof burden. We take
as a starting point the xvé6 teaching operating system [17], a
modern re-implementation of the Unix V6 for x86. Rather
than using interactive theorem provers such as Isabelle [54]
or Coq [16] to manually write proofs, we have redesigned
the xv6 kernel interface to make it amenable to automated
reasoning using satisfiability modulo theories (SMT) solvers.
The resulting kernel, referred to as the Hyperkernel in this
paper, is formally verified using the Z3 SMT solver [19].

A key challenge in verifying Hyperkernel is one of inter-
face design, which needs to strike a balance between usability
and proof automation. On one hand, the kernel maintains a
rich set of data structures and invariants to manage processes,
virtual memory, and devices, among other resources. As a re-

ale | CSdlbfhe Hyperkernel interface needs to support specification

and verification of high-level properties (e.g.. process isola-
t1on) that nrovide a hacie far reacaning ahont the correctnace

Improving Execution Contexts

ILLINOIS INSTITUTE@.
OF TECHNOLOGY

SOSP ‘19

My VM is Lighter (and Safer) than your Container

Filipe Manco Costin Lupu Florian Schmidt
NEC Laboratories Europe Univ. Politehnica of Bucharest NEC Laboratories Europe
filipe.manco@gmail.com costinlupu@cs.pub.ro florian.schmidt@neclab.eu

Jose Mendes Simon Kuenzer Sumit Sati
NEC Laboratories Europe NEC Laboratories Europe NEC Laboratories Europe

jose.mendes@neclab.eu

simon.kuenzer@neclab.eu

sati.vicky@gmail.com

Kenichi Yasukata Costin Raiciu Felipe Huici
NEC Laboratories Europe Univ. Politehnica of Bucharest NEC Laboratories Europe
kenichi.yasukata@neclab.eu costin.raiciu@cs.pub.ro felipe.huici@neclab.eu
ABSTRACT CCS CONCEPTS

Containers are in great demand because they are lightweight
when compared to virtual machines. On the downside, con-
tainers offer weaker isolation than VMs, to the point where
people run containers in virtual machines to achieve proper
isolation. In this paper, we examine whether there is indeed
a strict tradeoff between isolation (VMs) and efficiency (con-
tainers). We find that VMs can be as nimble as containers, as
long as they are small and the toolstack is fast enough.

We achieve lightweight VMs by using unikernels for spe-
cialized applications and with Tinyx, a tool that enables
creating tailor-made, trimmed-down Linux virtual machines.
By themselves, lightweight virtual machines are not enough
to ensure good performance since the virtualization control
plane (the toolstack) becomes the performance bottleneck.
We present LightVM, a new virtualization solution based
on Xen that is optimized to offer fast boot-times regardless
of the number of active VMs. LightVM features a compl
redesign of Xen's control plane, transforming its central
operation to a distributed one where interactions with the

B T SR TS SIS, SR O 5 T (R S R

« Software and its engineering — Virtual machines:
Operating Systems;

KEYWORDS

Virtualization, unikernels, specialization, operating systems,
Xen, containers, hypervisor, virtual machine.

ACM Reference Format:

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. 2017. My VM is Lighter (and Safer) than your Container. In
Proceedings of SOSP "17: ACM SIGOPS 26th Symposium on Operating
Systems Principles, Shanghai, China, October 28, 2017 (SOSP '17),

16 pages.
https://doi.org/10.1145/3132747 3132763

1 INTRODUCTION

iﬂéle | &hé=ight virtualization technologies such as Docker [6]

and LXC [25] are gaining enormous traction. Google, for
instance, is reported to run all of its services in containers [4],

How long will we write OSes in C?

ILLINOIS INSTITUTEﬁ&.
OF TECHNOLOGY

OSDI ‘20

RedLeaf: Isolation and Communication in a Safe Operating System

Vikram Narayanan
University of California, Irvine

David Detweiler
University of California, Irvine

Tianjiao Huang
University of California, Irvine
Dan Appel

University of California, Irvine

Zhaofeng Li Gerd Zellweger Anton Burtsev
University of California, Irvine VMware Research University of California, Irvine
Abstract remained prohibitive for low-level operating system code.

RedLeaf is a new operating system developed from scratch
in Rust to explore the impact of language safety on operat-
ing system organization. In contrast to commodity systems,
RedLeaf does not rely on hardware address spaces for isola-
tion and instead uses only type and memory safety of the Rust
language. Departure from costly hardware isolation mecha-
nisms allows us to explore the design space of systems that
embrace lightweight fine-grained isolation. We develop a
new abstraction of a lightweight language-based isolation
domain that provides a unit of information hiding and fault
isolation. Domains can be dynamically loaded and cleanly
terminated, i.e., errors in one domain do not affect the ex-
ecution of other domains. Building on RedLeaf isolation

mechanisms, we demonstrate the possibility to inm]ﬂ@epcs 45

end-to-end zero-copy, fault isolation, and transparent recov-
erv of device drivers. To evaluate the practicality of RedLeaf

Traditionally, safe languages require a managed runtime, and
specifically, garbage collection, to implement safety. Despite
many advances in garbage collection, its overhead is high for
systems designed to process millions of requests per second
per core (the fastest garbage collected languages experience
20-50% slowdown compared to C on a typical device driver
workload [28]).

For decades, breaking the design choice of a monolithic ker-
nel remained impractical. As a result, modern kernels suffer
from lack of isolation and its benefits: clean modularity, infor-
mation hiding, fault isolation, transparent subsystem recovery,
and fine-grained access control.

The historical balance of isolation and performance is

hanging with the development of Rust, arguably, the first
@ractical language that achieves safety without garbage col-
lection [45]. Rust combines an old idea of linear types [86]

10

There’s a lot of data, and it moves too much

* New workloads lack locality. Reintroduction of memory bandwidth
limitations

e Gotta move stuff close to the data!
 PIM/NDP
e Hybrid Memory systems

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Asking questions on a lot of data...

ILLINOIS INSTITUTEﬁ&.
OF TECHNOLOGY

SOSP ‘19

Low-Latency Analytics on Colossal Data Streams
with SummaryStore

Nitin Agrawal

Samsung Research

Abstract

SummaryStore is an approximate time-series store, designed
for analytics, capable of storing large volumes of time-series
data (~1 petabyte) on a single node: it preserves high de-
grees of query accuracy and enables near real-time querying
at unprecedented cost savings. SummaryStore contributes
time-decayed summaries, a novel abstraction for summariz-
ing data streams, along with an ingest algorithm to con-
tinually merge the summaries for efficient range queries;
in conjunction, it returns reliable error estimates alongside
the approximate answers, supporting a range of machine
learning and analytical workloads. We successfully evalu-
ated SummaryStore using real-world applications for fore-
casting, outlier detection, and Internet traffic monitoring; it
can summarize aggressively with low median errors, 0.1 to
10%, for different workloads. Under range-query microbench-

marks, it stored 1 PB synthetic stream data (1024 1TB streams),

on a single node, using roughly 10 TB (100x compaction)
with 95%-ile error below 5% and median cold-cache query
latency of 1.3s (worst case latency under 70s).

1 Introduction

Continuous generation of time-series data is on a signifi-

S U DU R o . [1

Ashish Vulimiri

Samsung Research

growth in capacity and simply adding hardware resources
to scale up or out is not cost efficient. Even if one were to
keep adding disks for capacity, as datasets grow, analytical
tasks become progressively slower. In-memory systems are
capable of significantly faster response times but are expen-
sive and do not store data persistently. Time—-series stores
thus need to meet the competing demands of providing cost-
effective storage while maintaining low response times.

Increasingly, algorithms, not human readers, consume time-
series data. Many of these algorithmic analyses are near real-
time, ranging from data-center monitoring [35, 52, 66), fi-
nancial forecasting [51], recommendation systems [56, 60),
to applications for smart homes and IoT [1, 40, 47, 75, 86].
Significant research in machine learning is devoted to agents
that learn on data over extended periods of time [19, 62, 76,
79]. A survey we performed of the various kinds of analy-
ses (§2) offers three major insights into the characteristics
of time-series workloads which mandate a fundamental re-
thinking of time-series storage systems.

First, the analytical tasks explore various aggregate at-
tributes and statistical properties retrospectively for an en-
tire stream, or a sub range, for higher-level applications in
forecasting, classification, or trend analysis. Unlike appli-
cations using key-value stores and file systems, analytical

PR TR T N T Y T Y Y . T

12

OS for near-data Processing

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

HotOS ‘17

It’s Time to Think About an Operating System for
Near Data Processing Architectures

Antonio Barbalace, Anthony Iliopoulos, Holm Rauchfuss, Goetz Brasche
Huawei German Research Center
name.surname@huawei.com

CCS CONCEPTS

+Hardware —Emerging architectures; Software and its en-
gineering —Operating systems; Tightly coupled architectures;
«Computer systems organization — Heterogeneous (hybrid) sys-
tems;

KEYWORDS

Near data processing, multiple kernels OS, decentralized resource
control, single protection domain

1 INTRODUCTION AND BACKGROUND

Near Data Processing, in form of processing in-memory (PIM) and
in-storage computing (ISC) was a very active area of research in
computer architectures in the '90s [1, 25]. About 3 years ago Bala-
subramonian et al. [7] presented the motivations behind the resur-

gence of interest in Near Data Processing (NDP) backed yp bydd 4o

reasons why it will be real this time, such as maturity of the underly-
ing technologies. and user demands that cannot be satisfied by cur-

Figure 1: Left side schematizes the traditional memory hier-
archy and the CPU. (Blue is volatile memory, yellow is per-
sistent memory.) Right side is a futuristic NDP architecture,
which include CPU, PIM, and ISC.

While fixed-function accelerators have to be managed like 10 de-

13

Scaling up mining of graphs...

ILLINOIS INSTITUTEﬁ&.
OF TECHNOLOGY

OSDI ‘18

ASAP: Fast, Approximate Graph Pattern Mining at Scale

Anand Padmanabha Iyer**

Zaoxing Liu™ Xin Jin"

Shivaram Venkataraman® Vladimir Braverman’ Ion Stoica*

*UC Berkeley T Johns Hopkins University

Abstract

While there has been a tremendous interest in processing
data that has an underlying graph structure, existing dis-
tributed graph processing systems take several minutes or
even hours to mine simple patterns on graphs. This paper
presents ASAP, a fast, approximate computation engine
for graph pattern mining. ASAP leverages state-of-the-art
results in graph approximation theory, and extends it to
general graph patterns in distributed settings. To enable
the users to navigate the tradeoff between the result accu-
racy and latency, we propose a novel approach to build the
Error-Latency Profile (ELP) for a given computation. We
have implemented ASAP on a general-purpose distributed
dataflow platform and evaluated it extensively on several

*Microsoft Research / University of Wisconsin

frameworks however have focused on graph analysis al-
gorithms. These frameworks are fast and can scale out
to handle very large graph analysis settings: for instance,
GraM [59] can run one iteration of page rank on a trillion-
edge graph in 140 seconds in a cluster. In contrast, systems
that support graph pattern mining fail to scale to even mod-
erately sized graphs, and are slow, taking several hours to
mine simple patterns [29, 55].

The main reason for the lack of the scalability in pattern
mining is the underlying complexity of these algorithms—
mining patterns requires complex computations and stor-
ing exponentially large intermediate candidate sets. For
example, a graph with a million vertices may possibly con-
tain 10'7 triangles. While distributed graph-processing

graph patterns. Our experimental results sholeadEﬂS&‘PZLSOSOlu'ions are good candidates for processing such massive

outperforms existing exact pattern mining solutions by up
e T 7w LEasvtbhoar ACTCAD e ool 804 rvvrmnsnlee sercth Ril): e

intermediate data, the need to do expensive joins to create
candidates severelv deerades performance. To overcome

14

Specialization

* Hardware
» Software
* Both increase complexity!

ILLINOIS INSTITUTE\W
OF TECHNOLOGY

We need an OS for the cloud

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

USENIX ATC ‘14

OSY— Optimizing the Operating System for Virtual Machines

Avi Kivity Dor Laor Glauber Costa Pekka Enberg

Nadav Har’El Don Marti

Vlad Zolotarov

Cloudius Systems
{avi,dor,glommer,penberg,nyh,dmarti,vladz}@cloudius-systems.com

Abstract

Virtual machines in the cloud typically run existing
general-purpose operating systems such as Linux. We
notice that the cloud’s hypervisor already provides some
features, such as isolation and hardware abstraction,
which are duplicated by traditional operating systems,
and that this duplication comes at a cost.

We present the design and implementation of OS",
a new guest operating system designed specifically for
running a single application on a virtual machine in the
cloud. It addresses the duplication issues by using a low-

e e shen

Application

JVM <—|

| provides abstraction
Operating System and protection

Hypervisor 4—'

Hardware

Figure 1: Software layers in a typical cloud VM.

16

Need to rethink OSes for supercomputing

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

ROSS ‘14

mOS: An Architecture for Extreme-Scale
Operating Systems

Robert W. Wisniewskit Todd Inglettt Pardo Keppel

Ravi Murty!

Linux®, or more specifically, the Linux API, plays a key
role in HPC computing. Even for extreme-scale computing,
a known and familiar API is required for production ma-
chines. However, an off-the-shelf Linux distribution faces
challenges at extreme scale. To date, two approaches have
been used to address the challenges of providing an operat-
ing system (OS) at extreme scale. In the Full-Weight Kernel
(FWK) approach, an OS, typically Linux, forms the starting
point, and work is undertaken to remove features from the
environment so that it will scale up across more cores and
out across a large cluster. A Light-Weight Kernel (LWK)
approach often starts with a new kernel and work is under-
taken to add functionality to provide a familiar API, typi-
cally Linux. Either approach however, results in an execu-
tion environment that is not fully Linux compatible.

mOS (multi Operating System) runs both an FWK (Linux),

and an LWK, simultaneously as kernels on the same compute
node. mOS thereby achieves the scalability and reliability
of LWKSs, while providing the full Linux functionality of an
FWK. Further, mOS works in concert with Operating Sys-
+amn Nadae OQCNY +a nfBrned cvatoam nralle o o 1/ +that

Rolf Riesen’

1. INTRODUCTION

As the system software community moves forward to ex-
ascale computing and beyond, there is the oft debated ques-
tion of how revolutionary versus how evolutionary the soft-
ware needs to be. Over the last half decade, researchers
have pushed in one direction or the other. We contend that
both directions are valid and needed simultaneously. Throw-
ing out all current software environments and starting over
would be untenable from an application perspective. Yet,
there are significant challenges getting to exascale and be-
yond, so revolutionary approaches are needed. Thus, we
need to simultaneously allow the evolutionary path, i.e., in
the OS context, a Linux API, to coexist with revolutionary
models supportable by a nimble LWK. The focus of mOS
is extreme-scale HPC. mOS, which simultaneously runs a
Linux and an LWK, supports the coexistence of evolutionary
and revolutionary models. In the rest of the introduction,
we describe the following motivations for mOS:

e simultaneously support the existing Linux API with LWK
performance, scalability, and reliability;

17

We agree

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

VEE ‘16

Enabling Hybrid Parallel Runtimes
Through Kernel and Virtualization Support

Kyle C. Hale

Peter A. Dinda

Department of Electrical Engineering and Computer Science
Northwestern University

{k-hale, pdinda}@northwestern.edu

Abstract

In our hybrid runtime (HRT) model, a parallel runtime sys-
tem and the application are together transformed into a spe-
cialized OS kernel that operates entirely in kernel mode and
can thus implement exactly its desired abstractions on top
of fully privileged hardware access. We describe the design
and implementation of two new tools that support the HRT
model. The first, the Nautilus Aerokernel, is a kernel frame-
work specifically designed to enable HRTs for x64 and Xeon

1. Introduction

Considerable innovation in parallelism is occurring today,
targeting a wide range of scales from mobile devices to ex-
ascale computing. How to execute parallel languages with
high performance and efficiency is a question of wide inter-
est. Our focus is on parallel runtime systems, the medium
through which these languages interact with the operating
system and the hardware. Many interaction models are pos-
sible, and the innovation and change driven by parallelism

Phi hardware. Aerokernel primitives are specialized for HRT | CS itself makes feasible the adoption of other models. We are

creation and thus can operate much faster, up to two orders
of maonitiide facter than related nrimitivee in I innix Aero-

studying one such model in depth.
A hvbrid rimtime (HRT)Y 1€ a9 narallel rmintime <vetem

18

So do these guys (now running on top

supercomputer

IPDPS ‘16

On the Scalability, Performance Isolation and Device Driver Transparency of the

IHK/McKernel Hybrid Lightweight Kernel

Balazs Gerofi, Masamichi Takagi, Atsushi Hori, Gou Nakamura', Tomoki Shirasawa’ and Yutaka Ishikawa

ILLINOIS INSTITUTE‘U’.
OF TECHNOLOGY

RIKEN Advanced Institute for Computational Science, JAPAN
THitachi Solutions, Ltd., JAPAN
YHitachi Solutions East Japan, Lid., JAPAN

bgerofi@riken.jp, masamichi.takagi@riken.jp, ahori@riken.jp, go.nakamura.yw@hitachi-solutions.com,

tomoki.shirasawa.kk@hitachi-solutions.com, yutaka.ishikawa@riken.jp

Abstract—Extreme degree of parallelism in high-end com-
puting requires low operating system noise so that large scale,
bulk-synchronous parallel applications can be run efficiently.
Noiseless execution has been historically achieved by deploying
lightweight kernels (LWK), which, on the other hand, can
provide only a restricted set of the POSIX API in exchange for
scalability. However, the increasing prevalence of more complex
application constructs, such as in-situ analysis and workflow
composition, dictates the need for the rich programming APIs
of POSIX/Linux. In order to comply with these seemingly
contradictory requirements, hybrid kernels, where Linux and
a lightweight kernel (LWK) are run side-by-side on compute
nodes, have been recently recognized as a promising approach.

complexity relies not only on rich features of POSIX, but
also on the Linux APIs (such as the /proc, /sys filesystems,
etc.) in particular.

Traditionally, lightweight operating systems specialized
for HPC followed two approaches to tackle the high degree
of parallelism so that scalable performance for bulk syn-
chronous applications can be delivered. In the full weight
kernel (FWK) approach [3], [4], [5], a full Linux environ-
ment is taken as the basis, and features that inhibit attaining
HPC scalability are removed, i.e., making it lightweight. The
pure lightweight kernel (LWK) approach [6], [7], [8], on the

19

Al

* It’s everywhere...including in the OS

ILLINOIS INSTITUTE@.
OF TECHNOLOGY

OSDI ‘20

ARTIFACT
EVALUATED

€,

LinnOS: Predictability on Unpredictable Flash Storage
with a Light Neural Network

Mingzhe Hao, Levent Toksoz, Nanqingin Li, Edward Edberg Halim',
Henry Hoffmann, and Haryadi S. Gunawi

University of Chicago

Abstract

This paper presents LinnOS, an operating system that lever-
ages a light neural network for inferring SSD performance
at a very fine—per-I0—granularity and helps parallel stor-
age applications achieve performance predictability. Lin-
nOS supports black-box devices and real production traces
without requiring any extra input from users, while outper-

forming industrial mechanisms and other approaches. Our

evaluation shows that, compared to hedging and heuristic-
based methods, LinnOS improves the average 1/0 latencies
by 9.6-79.6% with 87-97% inference accuracy and 4-6us in-

ference overhead for each I/O, demonstrating that it is pos-

sible to incorporate machine learning inside operating sys-
tems for real-time decision-making.

1 Introduction

Predictable performance is an important requirement for to-

!Surya University

ment the recommendations. In the middle ground, “gray-
box™ methods suggest partial device-level modification com-
bined with OS or application-level changes working together
in taming the latency unpredictability [38, 39, 40, 58, 76, 77].
However, they also depend on the vendors’ willingness to
modify the device interface. Finally, more adoptable “black-
box™ techniques attempt to mask the unpredictability with-
out modifying the underlying hardware and its level of ab-
straction. Some of them optimize the file systems or storage
applications specifically for SSD usage [18, 37, 41, 42, 43,
54, 59, 69, 70], while some others simply use speculative
execution [1, 5] but pay the cost of extra I/Os due to being
oblivious to storage behaviors. Among all the approaches
above, arguably, the most popular solution is speculative ex-
ecution given its simplicity and capability to mitigate ev-
ery slow I/O. For example, “hedged requests™ [21], a form
of speculative execution, is supported in many widely-used
key-value stores today [1. 5, 8].

We take 9 new annroach: let the device he the device

20

It’s all about frameworks...

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

OSDI ‘18

Ray: A Distributed Framework for Emerging AI Applications

Philipp Moritz} Robert Nishihara; Stephanie Wang, Alexey Tumanov, Richard Liaw,
Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael 1. Jordan, Ion Stoica
University of California, Berkeley

Abstract

The next generation of Al applications will continuously
interact with the environment and learn from these inter-
actions. These applications impose new and demanding
systems requirements, both in terms of performance and
flexibility. In this paper, we consider these requirements
and present Ray—a distributed system to address them.
Ray implements a unified interface that can express both
task-parallel and actor-based computations, supported by
a single dynamic execution engine. To meet the perfor-
mance requirements, Ray employs a distributed scheduler
and a distributed and fault-tolerant store to man/th® thé
system’s control state. In our experiments, we demon-

L 2* 1. 2 4. O 11t . E T 1

and their use in prediction. These frameworks often lever-
age specialized hardware (e.g., GPUs and TPUs), with the
goal of reducing training time in a batch setting. Examples
include TensorFlow [7], MXNet [18], and PyTorch [46].

The promise of Al is, however, far broader than classi-
cal supervised learning. Emerging Al applications must
increasingly operate in dynamic environments, react to
changes in the environment, and take sequences of ac-
tions to accomplish long-term goals [8, 43]. They must
aim not only to exploit the data gathered, but also to ex-
plore the space of possible actions. These broader require-

cs Mmgnts are naturally framed within the paradigm of rein-
forcement learning (RL). RL deals with learning to oper-

ate continuously within an uncertain environment based

0T (compute is everywhere

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

SOSP ‘19

Multiprogramming a 64 kB Computer
Safely and Efficiently

Amit Levy Bradford Campbell Branden Ghena
levya@cs.stanford.edu bradjc@virginia.edu brghena@berkeley.edu
Stanford University University of Virginia University of California, Berkeley
Daniel B. Giffin Pat Pannuto Prabal Dutta
dbg @scs.stanford.edu ppannuto@berkeley.edu prabal @berkeley.edu
Stanford University University of California, Berkeley University of California, Berkeley
Philip Levis

pal@cs.stanford.edu
Stanford University

ABSTRACT

Low-power microcontrollers lack some of the hardware fea-
tures and memory resources that enable multiprogrammable
systems. Accordingly. microcontroller-based operating sys-
tems have not provided important features like fault isolation,
dynamic memory allocation, and flexible concurrency. How-
ever, an emerging class of embedded applications are software
platforms, rather than single purpose devices, and need these
multiprogramming features. Tock, a new operating system for
low-power platforms, takes advantage of limited hardware-
protection mechanisms as well as the type-safety features
of the Rust programming language to provide a multipro-
gramming environment for microcontrollers. Tock isolates
software faults, provides memory protection, and efficiently
manages memory for dynamic application workloads written
in any language. It achieves this while retaining the depend-
ability requirements of long-running applications.

U2F App

Figure 1: A USB authentication device provides a num-
ber of related, but independent functions on a single em-
bedded device. Tock is able to enforce this natural divi-
sion as separate processes that share hardware function-
ality. An example Tock-based architecture for an authen-
tication key is pictured above. Each application (in green)
uses a different combination of common, and often mul-

tiplexed, hardware resources exposed by the kernel (in
AP

22

Outdated hardware/software layers

* Memory becoming more persistent
 Parallelism limited
* Compilers way more sophisticated

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Not your Parents’ Bytecode

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

PPoPP ‘18

HPVM: Heterogeneous Parallel Virtual Machine

Maria Kotsifakou' Prakalp Srivastava’ Matthew D. Sinclair
Department of Computer Science Department of Computer Science Department of Computer Science
University of lllinois at University of Illinois at University of lllinois at
Urbana-Champaign Urbana-Champaign Urbana-Champaign
kotsifa2@illinois.edu psrivas2@illinois.edu mdsincl2@illinois.edu

Rakesh Komuravelli Vikram Adve Sarita Adve
Qualcomm Technologies Inc. Department of Computer Science Department of Computer Science
rakesh.komuravelli@qti.qualcomm. University of Illinois at University of Illinois at
com Urbana-Champaign Urbana-Champaign
vadve@illinois.edu sadve@illinois.edu
Abstract hardware, and that runtime scheduling policies can make

We propose a parallel program representation for heteroge-
neous systems, designed to enable performance portability
across a wide range of popular parallel hardware, including
GPUs, vector instruction sets, multicore CPUs and poten-
tially FPGAs. Our representation, which we call HPVM, is a
hierarchical dataflow graph with shared memory and vector
instructions. HPVM supports three important capabilities for
programming heterogeneous systems: a compiler interme-
diate representation (IR), a virtual instruction set (ISA), and
a basis for runtime scheduling; previous systems focus on
only one of these capabilities. As a compiler IR, HPVM aims
to enable effective code generation and optimization for het-
erogeneous systems. As a virtual ISA, it can be used to ship
executable programs, in order to achieve both functional

portability and performance portability across such systenidg|e |

At runtime, HPVM enables flexible scheduling policies, both

through the graph structure and the ability to compile indi-

use of both program and runtime information to exploit the
flexible compilation capabilities. Overall, we conclude that
the HPVM representation is a promising basis for achieving
performance portability and for implementing parallelizing
compilers for heterogeneous parallel systems.

CCS Concepts + Computer systems organization —
Heterogeneous (hybrid) systems;

Keywords Virtual ISA, Compiler, Parallel IR, Heterogeneous
Systems, GPU, Vector SIMD

1 Introduction

Heterogeneous parallel systems are becoming increasingly
popular in systems ranging from portable mobile devices to
lfg%\-45&i)supercomputers to data centers. Such systems are
attractive because they use specialized computing elements,

2nnkedleae YN e csannbheas Tasskusanas DY Acs amd Jdacaades

24

SSDs change a lot of assumptions...

ILLINOIS INSTITUTEiU’.
OF TECHNOLOGY

OSDI ‘18

FLASHSHARE: Punching Through Server Storage Stack from Kernel to
Firmware for Ultra-Low Latency SSDs

Jie Zhangl , Miryeong Kwon', Donghyun Gouk!, Sungjoon Koh!, Changlim Lee!,
Mohammad Alian? , Myoungjun Chun?, Mahmut Taylan Kandemir,
Nam Sung Kim?, Jihong Kim?, and Myoungsoo Jung!

Yonsei UniversityI ,
Computer Architecture and Memory Systems Laboratory,

University of Illinois Urbana-Champaign?, Seoul National University, Pennsylvania State University*
http://camelab.org

Abstract

A modern datacenter server aims to achieve high energy
efficiency by co-running multiple applications. Some of
such applications (e.g., web search) are latency sensi-
tive. Therefore, they require low-latency I/O services to
fast respond to requests from clients. However, we ob-
serve that simply replacing the storage devices of servers
with Ultra-Low-Latency (ULL) SSDs does not notably
reduce the latency of I/O services, especially when co-
running multiple applications. In this paper, we pro-
pose FLASHSHARE to assist ULL SSDs to satisfy differ-

vices [8]. As such applications are often required to
satisfy a given Service Level Agreement (SLA), the
servers should process requests received from clients and
send the responses back to the clients within a certain
amount of time. This requirement makes the online ap-
plications latency-sensitive, and the servers are typically
(over)provisioned to meet the SLA even when they un-
expectedly receive many requests in a short time period.
However, since such events are infrequent, the average
utilization of the servers is low, resulting in low energy
efficiency with poor energy proportionality of contempo-
rary servers [28, 17].

25

Security/Privacy

* Greater complexity -> security more difficult
* More and more devices connected to networks!
* More information out there -> privacy more difficult

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Systems for Secure Communication

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

SOSP ‘19

Stadium: A Distributed Metadata-Private
Messaging System

Nirvan Tyagi Yossi Gilad Derek Leung
Cornell University Boston University MIT CSAIL
MIT CSAIL
Matei Zaharia Nickolai Zeldovich
Stanford University MIT CSAIL
ABSTRACT CCS CONCEPTS

Private communication over the Internet remains a challeng-
ing problem. Even if messages are encrypted, it is hard to
deliver them without revealing metadata about which pairs
of users are communicating. Scalable anonymity systems,
such as Tor, are susceptible to traffic analysis attacks that
leak metadata. In contrast, the largest-scale systems with
metadata privacy require passing all messages through a
small number of providers, requiring a high operational cost
for each provider and limiting their deployability in practice.

This paper presents Stadium, a point-to-point messaging
system that provides metadata and data privacy while scal-
ing its work efficiently across hundreds of low-cost providers
operated by different organizations. Much like Vuvuzela,
the current largest-scale metadata-private system, Stadium
achieves its provable guarantees through differential privacy

amdd e adiiaicrnes i sy e Fondaes TTha Rraaer cbsnllowssrs Sun

+ Security and privacy — Pseudonymity, anonymity
and untraceability; Privacy-preserving protocols; Dis-
tributed systems security;

KEYWORDS

anonymous communication, differential privacy, mixnet, ver-
ifiable shuffle

1 INTRODUCTION

The continued prominence of anonymous whistleblowing
and private communication in world affairs means that these
issues, and the systems that enable them, have become an
integral part of society. As a result, there is substantial inter-
est in systems that offer strong privacy guarantees—often

Pl L R I gy Immemmssemn 7. . IgEeps, N LSy PR WEm——

27

Where you compute should be safe...

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

OSDI ‘18

Graviton: Trusted Execution Environments on GPUs

Stavros Volos Kapil Vaswani
Microsoft Research Microsoft Research
Abstract

We propose Graviton, an architecture for supporting
trusted execution environments on GPUs. Graviton en-
ables applications to offload security- and performance-
sensitive kernels and data to a GPU, and execute kernels
in isolation from other code running on the GPU and all
software on the host, including the device driver, the op-
erating system, and the hypervisor. Graviton can be in-
tegrated into existing GPUs with relatively low hardware
complexity; all changes are restricted to peripheral com-
ponents, such as the GPU’s command processor, with
no changes to existing CPUs, GPU cores, or the GPU’s
MMU and memory controller. We also propose exten-
sions to the CUDA runtime for securely copying data
and executing kernels on the GPU. We have implemented
Graviton on off-the-shelf NVIDIA GPUs, using emula-
tion for new hardware features. Our evaluation shows
that overheads are low (17-33%) with encryption and de-
cryption of traffic to and from the GPU being the main

Rodrigo Bruno
INESC-ID / IST, University of Lisbon

tors. This limitation gives rise to an undesirable trade-off
between security and performance.

There are several reasons why adding TEE support
to accelerators is challenging. With most accelerators,
a device driver is responsible for managing device re-
sources (e.g., device memory) and has complete control
over the device. Furthermore, high-throughput accelera-
tors (e.g., GPUs) achieve high performance by integrat-
ing a large number of cores, and using high bandwidth
memory to satisfy their massive bandwidth requirements
[4, 11]. Any major change in the cores, memory man-
agement unit, or the memory controller can result in
unacceptably large overheads. For instance, providing
memory confidentiality and integrity via an encryption
engine and Merkle tree will significantly impact avail-
able memory capacity and bandwidth, already a precious
commodity on accelerators. Similarly, enforcing mem-
ory isolation through SGX-like checks during address
translation would severely under-utilize accelerators due
to their sensitivitv to address translation latencv [351.

28

