
Concurrency Bugs

Questions answered in this lecture:
• Why is concurrent programming difficult?
• What type of concurrency bugs occur?
• How to fix atomicity bugs (with locks)?
• How to fix ordering bugs (with condition variables)?
• How does deadlock occur?
• How to prevent deadlock (with waitfree algorithms, grab all locks

atomically, trylocks, and ordering across locks)?

CS450 | Hale 1

Concurrency in Medicine: Therac-25
(1980’s)

CS450 | Hale 2

“The accidents occurred when the high-power electron beam
was activated instead of the intended low power beam, and
without the beam spreader plate rotated into place. Previous
models had hardware interlocks in place to prevent this, but
Therac-25 had removed them, depending instead on software
interlocks for safety. The software interlock could fail due to a
race condition.”

“…in three cases, the injured patients later died.”

Source: http://en.wikipedia.org/wiki/Therac-25

http://en.wikipedia.org/wiki/Therac-25

Lu etal. Study:
For four major projects, search for concurrency bugs among >500K bug
reports. Analyze small sample to identify common types of concurrency
bugs.

0

15

30

45

60

75

MySQL Mozilla

Bu
gs

Atomicity Order Deadlock Other

Source: http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Concurrency Study from 2008

OpenOfficeApache

CS450 | Hale 3

http://pages.cs.wisc.edu/~shanlu/paper/asplos122-lu.pdf

Atomicity: MySQL

Thread 1:
if (thd->proc_info) {

…
fputs(thd->proc_info, …);
…

}

What’s wrong?

Thread 2:

thd->proc_info = NULL;

Test (thd->proc_info != NULL) and set (writing to thd->proc_info)
should be atomic

CS450 | Hale 4

Fix Atomicity Bugs with Locks
Thread 1:
pthread_mutex_lock(&lock);
if (thd->proc_info) {

…
fputs(thd->proc_info, …);
…

}
pthread_mutex_unlock(&lock);

Thread 2:

pthread_mutex_lock(&lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&lock);

CS450 | Hale 5

Ordering: Mozilla
Thread 1:

void init() {
…
mThread =
PR_CreateThread(mMain, …);

…
}

Thread 2:

void mMain(…) {
…

mState = mThread->State;

…

}What’s wrong?

Thread 1 sets value of mThread needed by Thread2
How to ensure that reading MThread happens after mThread initialization?

CS450 | Hale 6

Fix Ordering bugs with Condition
variables

Thread 2:

void mMain(…) {
…

Mutex_lock(&mtLock);
while (mtInit == 0)

Cond_wait(&mtCond, &mtLock);
Mutex_unlock(&mtLock);

mState = mThread->State;
…

}

Thread 1:
void init() {

…

mThread =
PR_CreateThread(mMain, …);

pthread_mutex_lock(&mtLock);
mtInit = 1;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);

…
}

CS450 | Hale 7

Deadlock

Deadlock: No progress can be made because two or more
threads are waiting for the other to take some action and thus
neither ever does

“Cooler" name: the deadly embrace (Dijkstra)

CS450 | Hale 8

ST
O
P

STOP

STO
P

STOP

CS450 | Hale 9

ST
O
P

STOP

STO
P

STOP

A

CS450 | Hale 10

ST
O
P

STOP

STO
P

STOP

A

B

CS450 | Hale 11

ST
O
P

STOP

STO
P

STOP

A

B

CS450 | Hale 12

ST
O
P

STOP

STO
P

STOP

A

B

who goes?

CS450 | Hale 13

ST
O
P

STOP

STO
P

STOP

A

B

CS450 | Hale 14

ST
O
P

STOP

STO
P

STOP

A

B

CS450 | Hale 15

ST
O
P

STOP

STO
P

STOP

CS450 | Hale 16

ST
O
P

STOP

STO
P

STOP

A

B

C

D

CS450 | Hale 17

ST
O
P

STOP

STO
P

STOP

A

B

C

D

who goes?

CS450 | Hale 18

ST
O
P

STOP

STO
P

STOP

AB

CD

who goes?

CS450 | Hale 19

ST
O
P

STOP

STO
P

STOP

AB

CD

Deadlock!

CS450 | Hale 20

Code Example
Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

Can deadlock happen with these two threads?

CS450 | Hale 21

Code Example
Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

CS450 | Hale 22

Circular Dependency

Lock A

Lock B

Thread 1

Thread 2

holds

holds

wanted
by

wanted
by

CS450 | Hale 23

Fix Deadlocked Code

Thread 2

lock(&A);
lock(&B);

Thread 1

lock(&A);
lock(&B);

Thread 2:

lock(&B);
lock(&A);

Thread 1:

lock(&A);
lock(&B);

How would you fix this code?

CS450 | Hale 24

Non-circular Dependency (fine)

Lock A

Lock B

Thread 1

Thread 2

holds

wanted
by

wanted
by

CS450 | Hale 25

What’s Wrong?
set_t *set_intersection (set_t *s1, set_t *s2) {

set_t *rv = Malloc(sizeof(*rv));
Mutex_lock(&s1->lock);
Mutex_lock(&s2->lock);
for(int i=0; i<s1->len; i++) {

if(set_contains(s2, s1->items[i])
set_add(rv, s1->items[i]);

Mutex_unlock(&s2->lock);
Mutex_unlock(&s1->lock);

}

CS450 | Hale 26

Encapsulation
Modularity can make it harder to see deadlocks

Thread 1:

rv = set_intersection(setA,

setB);

Thread 2:

rv = set_intersection(setB,

setA);
Solution?

if (m1 > m2) {
// grab locks in high-to-low address order
pthread_mutex_lock(m1);
pthread_mutex_lock(m2);

} else {
pthread_mutex_lock(m2);
pthread_mutex_lock(m1);

}

Any other problems?

Code assumes m1 != m2 (not same lock)

CS450 | Hale 27

Deadlock Theory

CS450 | Hale 28

Deadlocks can only happen with these four conditions:
• mutual exclusion
• hold-and-wait
• no preemption
• circular wait

Eliminate deadlock by eliminating any one condition

Mutual Exclusion

Definition:

Threads claim exclusive control of resources that they
require (e.g., thread grabs a lock)

CS450 | Hale 29

Wait-Free Algorithms
Strategy: Eliminate locks!
Try to replace locks with atomic primitive:

int CompAndSwap(int *addr, int expected, int new);
Returns 0: fail, 1: success

void add (int *val, int amt) {
do {

int old = *value;
} while(!CompAndSwap(val, ??,

old+amt);
}

void add (int *val, int
amt) {

mutex_lock(&m);
*val += amt;
mutex_unlock(&m);

}

?? à old

CS450 | Hale 30

Wait-Free Algorithms:
Linked List Insert
Strategy: Eliminate locks!
int CompAndSwap(int *addr, int expected, int new);
Returns 0: fail, 1: success

void insert (int val) {
node_t *n = malloc(sizeof(*n));
n->val = val;
lock(&m);
n->next = head;
head = n;
unlock(&m);

}

void insert (int val) {
node_t *n = malloc(sizeof(*n));
n->val = val;
do {

n->next = head;
} while (!CompAndSwap(&head,

n->next, n));
}

CS450 | Hale 31

Deadlock Theory

CS450 | Hale 32

Deadlocks can only happen with these four conditions:
• mutual exclusion
• hold-and-wait
• no preemption
• circular wait

Eliminate deadlock by eliminating any one condition

Hold-and-Wait

Definition:

Threads hold resources allocated to them (e.g., locks they
have already acquired) while waiting for additional
resources (e.g., locks they wish to acquire).

CS450 | Hale 33

Eliminate
Hold-and-Wait

Strategy: Acquire all locks atomically once
Can release locks over time, but cannot acquire again until all have been
released

How to do this? Use a meta lock, like this:
lock(&meta);
lock(&L1);
lock(&L2);
…
unlock(&meta);

// Critical section code

unlock(…);

Disadvantages?

Must know ahead of time which locks will be needed
Must be conservative (acquire any lock possibly needed)
Degenerates to just having one big lock

CS450 | Hale 34

Deadlock Theory

CS450 | Hale 35

Deadlocks can only happen with these four conditions:
• mutual exclusion
• hold-and-wait
• no preemption
• circular wait

Eliminate deadlock by eliminating any one condition

No preemption

Definition:

Resources (e.g., locks) cannot be forcibly removed from
threads that are holding them.

CS450 | Hale 36

Support Preemption
Strategy: if thread can’t get what it wants, release what it holds
top:

lock(A);
if (trylock(B) == -1) {

unlock(A);
goto top;

}
…

Disadvantages?

Livelock:
no processes make progress, but the state
of involved processes constantly changes
Classic solution: Exponential back-off

CS450 | Hale 37

Deadlock Theory

CS450 | Hale 38

Deadlocks can only happen with these four conditions:
• mutual exclusion
• hold-and-wait
• no preemption
• circular wait

Eliminate deadlock by eliminating any one condition

Circular Wait

Definition:

There exists a circular chain of threads such that each
thread holds a resource (e.g., lock) being requested by next
thread in the chain.

CS450 | Hale 39

Eliminating Circular Waiting

Strategy:
- decide which locks should be acquired before others
- if A before B, never acquire A if B is already held!
- document this, and write code accordingly

Works well if system has distinct layers

CS450 | Hale 40

Lock Ordering in Linux
In linux-3.2.51/include/linux/fs.h

/* inode->i_mutex nesting subclasses for the lock
* validator:
* 0: the object of the current VFS operation
* 1: parent
* 2: child/target
* 3: quota file
* The locking order between these classes is
* parent -> child -> normal -> xattr -> quota
*/

CS450 | Hale 41

Summary

CS450 | Hale 42

•When in doubt about correctness, better to limit
concurrency (i.e., add unnecessary lock)
• Concurrency is hard, state encapsulation makes it harder!
• This is a motivator for language support…

•Have a strategy to avoid deadlock and stick to it
• Choosing a lock order is probably most practical

