
Hard Disks



Basic Interface 2

Disk has a sector-addressable address space
u Appears as an array of sectors

Sectors are typically 512 bytes or 4096 bytes.

Main operations: reads + writes to sectors

Mechanical (slow) nature makes management 
“interesting”



Platter

Disk Internals



Platter is covered with a magnetic film.



Spindle



Surface

Surface



Many platters may be bound to the spindle.



Each surface is divided into rings called tracks.
A stack of tracks (across platters) is called a cylinder.



The tracks are divided into numbered sectors.

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



Heads on a moving arm can read from each surface.

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

spin

Spindle/platters rapidly spin.



Disk Terminology 12

spindle

platter

surface

trackcylinder

sector

read/write head



Hard Drive Demo 13

u http://youtu.be/9eMWG3fwiEU?t=30s

u https://www.youtube.com/watch?v=L0nbo1VOF4M

http://youtu.be/9eMWG3fwiEU?t=30s
http://youtu.be/9eMWG3fwiEU?t=30s


Let’s Read 12!

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



Positioning

Drive servo system keeps head on track
u How does the disk head know where it is?

u Platters not perfectly aligned, tracks not perfectly concentric 
(runout) -- difficult to stay on track

u More difficult as density of disk increase
u More bits per inch (BPI), more tracks per inch (TPI)

Use servo burst:
u Record placement information every few (3-5) sectors

u When head crosses servo burst, figure out location and adjust 
as needed

15



Let’s Read 12!

1
23

06
5 4

7
8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



Seek to right track.

1
2

3

0
6
5 4

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20



Seek to right track.

1
2
3

0
6
5 4

7
8 9

10

11

15

14

13
12

16
17

18

19

23

22

21
20



Seek to right track.

1
2
3

0
6
5 4

7

8 9
10

11

15

14
13 12

16 17

18

19

23

22

21 20



Wait for rotation.

1 2
3

0
6 5 4

7
8 9

10
11

15
14

13 12

16

17

18
19

23
22

21

20



Wait for rotation.

1 2
30

6 5
47

8
9 10

11

15
14 13

12

16

17 18

19

23

22 21

20



Wait for rotation.

1
2 3

0 6
5
4

78

9
10 11

15 14
13

12

16

17

18 19

23 22

21

20



Wait for rotation.

1
2

3

0
6
54

7
8

9

10

11

15
14

13
12

16

17

18

19

23

22

21

20



Wait for rotation.

1
2

3
0

6
54

7
89

10
11

15
14

1312

1617

18
19

23
22

2120



Wait for rotation.

12
3 0

65
4 7
8

910

11

15
1413

12

16

1718

19

23

2221

20



Transfer data.

123

0
65

4

7 8
9
10

11

15

1413
12

16
17

18

19

23

22

21
20



Transfer data.

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

1819

2322

21

20



Transfer data.

1
23

06
5
4

7 8

9
1011

1514
13

12

16

17

18
19

23
22

21

20



Yay!

1
23

06
5
4

7
8
9

10
11

15
14
13

12

16

17

18
19

23

22

21

20



Time to Read/write

Three components:

Time = seek + rotation + transfer time

30



Seek, Rotate, Transfer 31

Seek cost: Function of cylinder distance
u Not purely linear cost

Must accelerate, coast, decelerate, settle
Settling alone can take 0.5 - 2 ms
Entire seeks often takes several milliseconds

u 4 - 10 ms
Approximate average seek distance = 1/3 max seek 
distance



Seek, Rotate, Transfer 32

Depends on rotations per minute (RPM)
u 7200 RPM is common, 15000 RPM is high end.

With 7200 RPM, how long to rotate around?
1 / 7200 RPM =
1 minute / 7200 rotations = 
1 second / 120 rotations =
8.3 ms / rotation

Average rotation?
8.3 ms / 2 = 4.15 ms 



Seek, Rotate, Transfer 33

Pretty fast — depends on RPM and sector 
density.

100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?

512 bytes * (1s / 100 MB) = 5 us



Workload Performance 34

So…
- seeks are slow
- rotations are slow
- transfers are fast

What kind of workload is fastest for disks?
Sequential: access sectors in order (transfer dominated)

Random: access sectors arbitrarily (seek+rotation 
dominated)



Disk Spec 35

Cheetah Barracuda
Capacity 300 GB 1 TB
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Sequential workload: what is throughput for each?

Cheeta: 125 MB/s.
Barracuda: 105 MB/s.



Disk Spec 36

Random workload: what is throughput for each?
(what else do you need to know?)

Cheetah Barracuda
Capacity 300 GB 1 TB
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

What is size of each random read?
Assume 16-KB reads



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Cheetah?

Seek + rotation + transfer

Seek = 4 ms

37



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Cheetah?

avg rotation = 
1
2

1 min
15000

60 sec
1 min

1000 ms
1 sec

= 2 ms

Average rotation in ms?

38



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Cheetah?

transfer = 
1 sec

125 MB
16 KB

1,000,000 us
1 sec

= 125 us

Transfer of 16 KB?

39



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

Throughput?

40



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Cheetah?

Cheetah time = 4ms + 2ms + 125us = 6.1ms

throughput = 
16 KB
6.1ms

1 MB
1024 KB

1000 ms
1 sec

= 2.5 MB/s

41



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Barracuda?

Time = seek + rotation + transfer
Seek = 9ms

42



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Barracuda?

avg rotation = 
1
2

1 min
7200

60 sec
1 min

1000 ms
1 sec

= 4.1 ms

43



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Barracuda?

transfer = 
1 sec

105 MB
16 KB

1,000,000 us
1 sec

= 149 us

44



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Barracuda?

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

45



Cheetah Barracuda
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s

How long does an average random 16-KB read take 
w/ Barracuda?

throughput = 
16 KB

13.2ms

Barracuda time = 9ms + 4.1ms + 149us = 13.2ms

1 MB
1024 KB

1000 ms
1 sec

= 1.2 MB/s

46



Cheetah Barracuda
Sequential 125 MB/s 105 MB/s
Random 2.5 MB/s 1.2 MB/s

Cheetah Barracuda
Capacity 300 GB 1 TB
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

47



Other Improvements

Track Skew

Zones

Cache

48



8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

Imagine sequential reading, 
how should sectors numbers be laid out on disk? 



8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20

When reading 16 after 15, the head won’t settle
quick enough, so we need to do a rotation.



8
9

10
11

15
14

13
12

23

23

16

17

21

20

19

18



8
9

10
11

15
14

13
12

23

23

16

17

21

20

19

18

enough time to settle now



Other Improvements 53

Track Skew

Zones

Cache









ZBR (Zoned bit recording): More sectors on outer tracks



Drive Cache 58

Drives may cache both reads and writes.
u OS caches data too

What advantage does caching in drive have for 
reads?

What advantage does caching in drive have for 
writes?

8
9

10
11

15
14

13
12

16

17

18

19

23

22

21

20



Buffering
Disks contain internal memory (2MB-16MB) used as 
cache

Read-ahead: “Track buffer”
u Read contents of entire track into memory during rotational 

delay

Write caching with volatile memory
u Immediate reporting: Claim written to disk when not

u Data could be lost on power failure

Tagged command queueing
u Have multiple outstanding requests to the disk

u Disk can reorder (schedule) requests for better performance

59



I/O Schedulers



I/O Schedulers 61

Given a stream of I/O requests, in what order 
should they be served?

Much different than CPU scheduling

Position of disk head relative to request position 
matters more than length of job



FCFS 
(First-Come-First-Serve)

62

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload take?
u Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003

~60ms



FCFS 
(First-Come-First-Serve)

63

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload take?
u Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003
300001, 300002, 300003, 700001, 700002, 700003

~60ms

~20ms



Schedulers 64

OS

Disk

Scheduler

Scheduler

Where should the
scheduler go?



SPTF (Shortest Positioning Time 
First)

65

Strategy: always choose request that requires least 
positioning time (time for seeking and rotating)

u Greedy algorithm (just looks for best NEXT decision)
How to implement in disk?

How to implement in OS?
Use Shortest Seek Time First (SSTF) instead

Disadvantages?
Easy for far away requests to starve



SCAN 66

Elevator Algorithm: 
u Sweep back and forth, from one end of disk other, 

serving requests as pass that cylinder
u Sorts by cylinder number; ignores rotation delays

Pros/Cons?

Better: C-SCAN (circular scan)
u Only sweep in one direction



What happens? 67

void reader(int fd) {
char buf[1024];
int rv;
while((rv = read(buf)) != 0) {

assert(rv);
// takes short time, e.g., 1ms
process(buf, rv);

}
}

Assume 2 processes each calling read() with C-SCAN



Work Conservation 68

Work conserving schedulers always try to do work 
if there’s work to be done

Sometimes, it’s better to wait instead if system
anticipates another request will arrive

Such non-work-conserving schedulers are called 
anticipatory schedulers



CFQ (Linux Default) 69

Completely Fair Queueing
u Queue for each process

u Weighted round-robin between queues, with slice 
time proportional to priority

u Yield slice only if idle for a given time (anticipation)

Optimize order within queue



I/O Device Summary 70

Overlap I/O and CPU whenever possible!
- use interrupts, DMA

Storage devices provide common block interface

On a disk: Never do random I/O unless you must!
- e.g., Quicksort is a terrible algorithm on disk

Spend time to schedule on slow, stateful devices


