
Persistence:
File System API

Questions answered in this lecture:

How to name files?

What are inode numbers?

How to lookup a file based on pathname?

What is a file descriptor?

What is the difference between hard and soft links?

How can special requirements be communicated to file system (fsync)?

Slides from: Andra C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

What is a File?

Array of persistent bytes that can be read/written

File system consists of many files
Refers to collection of files

Also refers to part of OS that manages those files

Files need names to access correct one

File Names

Three types of names
• Unique id: inode numbers

• Path

• File descriptor

Inode Number

Each file has exactly one inode number

Inodes are unique (at a given time) within file system

Different file system may use the same number,
numbers may be recycled after deletes

See inodes via “ls –i”; see them increment…

What does “i” stand
for?

“In truth, I don't know either. It was just a term that we started
to use. ‘Index’ is my best guess, because of the slightly unusual

file system structure that stored the access information of files as a
flat array on the disk…”

~ Dennis Ritchie

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

file

file

in
od

e
nu

m
be

r

Data

Meta-data

File API (attempt 1)

read(int inode, void *buf, size_t nbyte)

write(int inode, void *buf, size_t nbyte)

seek(int inode, off_t offset)
seek does not cause disk seek until read/write

Disadvantages?

- names hard to remember
- no organization or meaning to inode numbers
- semantics of offset across multiple processes?

Paths

String names are friendlier than number names

File system still interacts with inode numbers

Store path-to-inode mappings in predetermined “root” file
(typically inode 2)

Directory!

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

in
od

e
nu

m
be

r

“readme.txt”: 3, “hello”: 0, …

Paths

Generalize!

Directory Tree instead of single root directory

Only file name needs to be unique
/usr/dusseau/file.txt

/tmp/file.txt

Store file-to-inode mapping for each directory

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 0

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 1

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 2

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 3

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 4

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 5

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…

“bashrc”: 3, …

settings: …

in
od

e
nu

m
be

r

“etc”: 0, …

read /etc/bashrc

reads: 6

Read root dir (inode and data);
read etc dir (inode and data);

read bashrc file (indode and data)

Reads for getting final inode called “traversal”

Directory Calls

mkdir: create new directory

readdir: read/parse directory entries

Why no writedir?

Special Directory
Entries

$ ls -la

total 728

drwxr-xr-x 34 trh staff 1156 Oct 19 11:41 .

drwxr-xr-x+ 59 trh staff 2006 Oct 8 15:49 ..

-rw-r--r--@ 1 trh staff 6148 Oct 19 11:42 .DS_Store

-rw-r--r-- 1 trh staff 553 Oct 2 14:29 asdf.txt

-rw-r--r-- 1 trh staff 553 Oct 2 14:05 asdf.txt~

drwxr-xr-x 4 trh staff 136 Jun 18 15:37 backup

…

cd /; ls -lia

File API (attempt 2)

pread(char *path, void *buf,

off_t offset, size_t nbyte)

pwrite(char *path, void *buf,

off_t offset, size_t nbyte)

Disadvantages?
Expensive traversal!
Goal: traverse once

File Names

Three types of names:

- inode

- path

- file descriptor

File Descriptor (fd)

Idea:
Do expensive traversal once (open file)
store inode in descriptor object (kept in memory).
Do reads/writes via descriptor, which tracks offset

Each process:
File-descriptor table contains pointers to open file descriptors

Integers used for file I/O are indexes into this table
stdin: 0, stdout: 1, stderr: 2

FD Table (xv6)
struct file {

...

struct inode *ip;

uint off;

};

// Per-process state

struct proc {

...

struct file *ofile[NOFILE]; // Open files

...

}

Code Snippet

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

int fd3 = dup(fd2); // returns 5

Code Snippet

0
1
2
3
4
5

offset = 0
inode =

fds
fd table

location = …
size = …

inode

“file.txt” also points here

int fd1 = open(“file.txt”); // returns 3

Code Snippet

0
1
2
3
4
5

offset = 12
inode =

fds
fd table

location = …
size = …

inode

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

Code Snippet

0
1
2
3
4
5

offset = 12
inode =

offset = 0
inode =

fds
fd table

location = …
size = …

inode

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

Code Snippet

int fd1 = open(“file.txt”); // returns 3

read(fd1, buf, 12);

int fd2 = open(“file.txt”); // returns 4

int fd3 = dup(fd2); // returns 5

0
1
2
3
4
5

offset = 12
inode =

offset = 0
inode =

fds
fd table

location = …
size = …

inode

File API (attempt 3)

int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

advantages:
- string names
- hierarchical
- traverse once
- different offsets precisely defined

Deleting Files

There is no system call for deleting files!

Inode (and associated file) is garbage collected when
there are no references (from paths or fds)

Paths are deleted when: unlink() is called

FDs are deleted when: close() or process quits

Network File System
Designers

A process can open a file, then remove the directory entry for
the file so that it has no name anywhere in the file system, and
still read and write the file. This is a disgusting bit of UNIX
trivia and at first we were just not going to support it, but it

turns out that all of the programs we didn’t want to have to fix
(csh, sendmail, etc.) use this for temporary files.

~ Sandberg et al.

Links: Demonstrate
Show hard links: Both path names use same inode number

File does not disappear until all removed; cannot link directories
Echo “Beginning…” > file1
“ln file1 link”
“cat link”
“ls –li” to see reference count
Echo “More info…” >> file1
“mv file1 file2”
“rm file2” decreases reference count

Soft or symbolic links: Point to second path name; can softlink to dirs
“ln –s oldfile softlink”
Confusing behavior: “file does not exist”!
Confusing behavior: “cd linked_dir; cd ..; in different parent!

Many File Systems

Users often want to use many file systems

For example:

- main disk

- backup disk

- AFS

- thumb drives

What is the most elegant way to support this?

Many File Systems:
Approach 1

• http://www.ofzenandcomputing.com/burn-files-cd-dvd-windows7/

http://www.ofzenandcomputing.com/burn-files-cd-dvd-windows7/

Many File Systems:
Approach 2

Idea: stitch all the file systems together into a super file system!

sh> mount

/dev/sda1 on / type ext4 (rw)

/dev/sdb1 on /backups type ext4 (rw)

AFS on /home type afs (rw)

• /dev/sda1 on /

• /dev/sdb1 on /backups

• AFS on /home

/

backups home

bak1 bak2 bak3

etc bin

kyle

450

p1 p2

.bashrc

Communicating
Requirements: fsync

File system keeps newly written data in memory for awhile

Write buffering improves performance (why?)

But what if system crashes before buffers are flushed?

If application cares:

fsync(int fd) forces buffers to flush to disk, and
(usually) tells disk to flush its write cache too

Makes data durable

rename

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

Just changes name of file, does not move data
Even when renaming to new directory (unless…?)

What can go wrong if system crashes at wrong time?

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
settings: …

in
od

e
nu

m
be

r

“oldname”: 3, …

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
settings: …

in
od

e
nu

m
be

r

…

location
size=12

inodes

0

location
size1

location
size2

location
size=63

…
settings: …

in
od

e
nu

m
be

r

“newname”: 3

rename

rename(char *old, char *new):

- deletes an old link to a file

- creates a new link to a file

What if we crash?

FS does extra work to guarantee atomicity; return to this issue
later…

Atomic File Update

Say application wants to update file.txt atomically
If crash, should see only old contents or only new contents

1. write new data to file.txt.tmp file

2. fsync file.txt.tmp

3. rename file.txt.tmp over file.txt, replacing it

Summary

Using multiple types of name provides

- convenience

- efficiency

Mount and link features provide flexibility.

Special calls (fsync, rename) let developers communicate
special requirements to file system

