
Virtualization:
The CPU

Questions answered in this lecture:
What is a process?
Why is limited direct execution a good approach for virtualizing the CPU?
What execution state must be saved for a process?
What 3 modes could a process be in?

Announcements:
Read chapters 1 – 6

Hale - CS 450 1

*Slide content borrowed from
Andrea Arpaci-Dusseau @UW

What is a Process?
Process: An execution stream in the context of a process state
What is an execution stream?

• Stream of executing instructions
• Running piece of code
• “thread of control”

What is process state?
• Everything that the running code can affect or be affected by
• Registers
• General purpose, floating point, status, program counter, stack pointer
• Address space
• Heap, stack, and code
• Open files

Hale - CS 450 2

Processes vs. Programs

A process is different than a program
• Program: Static code and static data
• Process: Dynamic instance of code and data

Can have multiple process instances of same program
• Can have multiple processes of the same program

Example: many users can run “ls” at the same time

Hale - CS 450 3

Process Creation

code
static data
Program

CPU Memory

Process Creation

code
static data
Program

CPU Memory

code
static data
heap

stack
Process

Processes vs. Threads

• A process is different than a thread
• Thread: “Lightweight process” (LWP)
• An execution stream that shares an address space
• Multiple threads within a single process
• These days processes are “made of” threads

• Example:
• Two processes examining same memory address 0xffe84264

see different values (I.e., different contents)
• Two threads examining memory address 0xffe84264

see same value (I.e., same contents)

Hale - CS 450 6

Virtualizing the CPU

Goal:
Give each process impression it alone is actively using CPU
Resources can be shared in time and space
Assume single uniprocessor

Time-sharing (multi-processors: advanced issue)
Memory?

Space-sharing (later)
Disk?

Space-sharing (later)

Hale - CS 450 7

How to Provide Good CPU Performance?
Direct execution
• Allow user process to run directly on hardware
• OS creates process and transfers control to starting point (i.e.,

main())
Problems with direct execution?

1. Process could do something restricted
Could read/write other process data (disk, memory) or restricted device

2. Process could run forever (slow, buggy, or malicious)
OS needs to be able to switch between processes

3. Process could do something slow (like I/O)
OS wants to use resources efficiently and switch CPU to other process

Solution:
Limited direct execution – OS and hardware maintain
some control

Hale - CS 450 8

Problem 1:
Restricted Operations

How can we ensure user process can’t harm others?
Solution: privilege levels supported by hardware (bit of

status)
• User processes run in user mode (restricted mode)
• OS runs in kernel mode (not restricted)
• Instructions for interacting with devices
• Could have many privilege levels (advanced topic)

How can process access device?
• System calls (function call implemented by OS)
• Change privilege level through system call (trap)

Hale - CS 450 9

RAM

Process P

System Call

sy
s_
re
ad

P wants to call read()

Hale - CS 450 10

RAM

Process P

P can only see its own memory because of user mode
(other areas, including kernel, are hidden)

System Call

Hale - CS 450 11

RAM

Process P

P wants to call read() but no way to call it directly

System Call

Hale - CS 450 12

RAM

Process P

movl $6, %eax; int $128

System Call

read():

Hale - CS 450 13

RAM

Process P

movl $6, %eax; int $128

trap-table indexsyscall-table index

System Call

Hale - CS 450 14

RAM

Process P

movl $6, %eax; int $128

Kernel mode: we can do anything!
trap-table indexsyscall-table index

Hale - CS 450 15

System Call

RAM

Process P

movl $6, %eax; int $128
sy
sc
al
l

sy
s_
re
ad

trap-table indexsyscall-table index

System Call

Follow entries to correct system call code
Hale - CS 450 16

RAM

Process P

movl $6, %eax; int $128
sy
sc
al
l

sy
s_
re
ad

buf

trap-table indexsyscall-table index

System Call

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

Hale - CS 450 17

What to limit?
User processes are not allowed to perform:
•General memory access
•Disk I/O
•Special hardware instructions (e.g. on x86, lidt)

What if process tries to do something restricted?

Hale - CS 450 18

Problem 2: How to take CPU away?
OS requirements for multiprogramming (or multitasking)
• Mechanism
• To switch between processes

• Policy
• To decide which process to schedule when

Separation of policy and mechanism
• Recurring theme in OS
• Policy: Decision-maker to optimize some workload performance

metric
• Which process when?
• Process Scheduler: Future lecture

• Mechanism: Low-level code that implements the decision
• How?
• Process Dispatcher: Today’s lecture

Hale - CS 450 19

Dispatch Mechanism

OS runs dispatch loop

while (1) {

run process A for some time-slice

stop process A and save its context

load context of another process B

}

Question 1: How does dispatcher gain control?
Question 2: What execution context must be saved and

restored?

Context-switch

Hale - CS 450 20

Q1: How does Dispatcher get control?

Option 1: Cooperative Multi-tasking
•Trust process to relinquish CPU to OS through traps
• Examples: System call, page fault (access page not in main memory),

or error (illegal instruction or divide by zero)
• Provide special yield() system call

Hale - CS 450 21

Cooperative Approach

P1

yield() call

Hale - CS 450 22

Cooperative Approach

OS

yield() call

Hale - CS 450 23

Cooperative Approach

OS

yield() return

Hale - CS 450 24

Cooperative Approach

P2

yield() return

Hale - CS 450 25

Cooperative Approach

P2

yield() call

Hale - CS 450 26

Q1: How Does Dispatcher Run?

•Problem with cooperative approach?
•Disadvantages: Processes can misbehave
• By avoiding all traps and performing no I/O, can take over

entire machine
• Only solution: Reboot!

•Not performed in (most) modern operating systems

Hale - CS 450 27

Q1: How does Dispatcher run?

Option 2: Preemptive Multi-tasking
•Guarantee OS can obtain control periodically
•Enter OS by enabling periodic alarm clock
• Hardware generates timer interrupt (CPU or separate chip)
• Example: Every 10ms

•User must not be able to mask timer interrupt
•Dispatcher counts interrupts between context

switches
• Example: Waiting 20 timer ticks gives 200 ms time slice
• Common time slices range from 10 ms to 200 ms

Hale - CS 450 28

Q2: What Context must be Saved?

Dispatcher must track context of process when not running
• Save context in process control block (PCB) (or, process descriptor)

What information is stored in PCB?
• PID
• Process state (I.e., running, ready, or blocked)
• Execution state (all registers, PC, stack ptr)
• Scheduling priority
• Accounting information (parent and child processes)
• Credentials (which resources can be accessed, owner)
• Pointers to other allocated resources (e.g., open files)

Requires special hardware support
• Hardware saves process PC and PSR on interrupts

Hale - CS 450 29

Operating System Hardware Program

Hale - CS 450 30

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System Hardware Program

Hale - CS 450 31

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

Operating System Hardware Program

Hale - CS 450 32

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Hale - CS 450 33

timer interrupt
save regs(A) to k-stack(A)
move to kernel mode
jump to trap handler

restore regs(B) from k-stack(B)
move to user mode
jump to B’s IP

Operating System Hardware Program

Hale - CS 450 34

CONTEXT SWITCH

Problem 3:
Slow Ops such as I/O?

When running process performs op that does not use CPU, OS
switches to process that needs CPU (policy issues)

OS must track mode of each process:
• Running:

• On the CPU (only one on a uniprocessor)
• Ready:

• Waiting for the CPU
• Blocked

• Asleep: Waiting for I/O or synchronization to complete

Running

Blocked

Ready

Transitions?

Hale - CS 450 35

Problem 3:
Slow ops such as I/O?

OS must track every process in system
• Each process identified by unique Process ID (PID)

OS maintains queues of all processes
• Ready queue: Contains all ready processes
• Event queue: One logical queue per event
• e.g., disk I/O and locks
• Contains all processes waiting for that event to complete

Next Topic: Policy for determining which ready process to
run

Hale - CS 450 36

Summary
Virtualization:

Context switching gives each process impression it has its
own CPU

Direct execution makes processes fast
Limited execution at key points to ensure OS retains control
Hardware provides a lot of OS support
• user vs kernel mode
• timer interrupts
• automatic register saving

Hale - CS 450 37

Process Creation
Two ways to create a process
• Build a new empty process from scratch
• Copy an existing process and change it appropriately

Option 1: New process from scratch
• Steps
• Load specified code and data into memory;

Create empty call stack
• Create and initialize PCB (make look like context-switch)
• Put process on ready list

• Advantages: No wasted work
• Disadvantages: Difficult to setup process correctly and to express all

possible options
• Process permissions, where to write I/O, environment variables
• Example: WindowsNT has call with 10 arguments

Hale - CS 450 38

Process Creation
Option 2: Clone existing process and change
• Example: Unix fork() and exec()
• Fork(): Clones calling process
• Exec(char *file): Overlays file image on calling process

• Fork()
• Stop current process and save its state
• Make copy of code, data, stack, and PCB
• Add new PCB to ready list
• Any changes needed to child process?

• Exec(char *file)
• Replace current data and code segments with those in specified file

• Advantages: Flexible, clean, simple
• Disadvantages: Wasteful to perform copy and then overwrite of

memory

Hale - CS 450 39

Unix Process Creation
How are Unix shells implemented?

While (1) {
Char *cmd = getcmd();
Int retval = fork();
If (retval == 0) {

// This is the child process
// Setup the child’s process environment here
// E.g., where is standard I/O, how to handle signals?
exec(cmd);
// exec does not return if it succeeds
printf(“ERROR: Could not execute %s\n”, cmd);
exit(1);

} else {
// This is the parent process; Wait for child to finish
int pid = retval;
wait(pid);

}
}

Hale - CS 450 40

