
Persistence:
Crash Consistency

Questions answered in this lecture:

What benefits and complexities exist because of data redundancy?

What can go wrong if disk blocks are not updated consistently?

How can file system be checked and fixed after crash?

How can journaling be used to obtain atomic updates?

How can the performance of journaling be improved?

Slides: Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Data Redundancy

Definition:
if A and B are two pieces of data,
and knowing A eliminates some or all values B could be,
there is redundancy between A and B

RAID examples:
• mirrored disk (complete redundancy)

• parity blocks (partial redundancy)

File system examples:
• Superblock: field contains total blocks in FS

• Inodes: field contains pointer to data block
• Is there redundancy between these two types of fields?

Why or why not?

File System
Redundancy Example

Superblock: field contains total number of blocks in FS

DATA = N

Inode: field contains pointer to data block; possible DATA?

DATA in {0, 1, 2, …, N - 1}

Pointers to block N or after are invalid!

Total-blocks field has redundancy with inode pointers

Question for You…

Give 5 examples of redundancy in FFS (or files system in general)

• Dir entries AND inode table

• Dir entries AND inode link count

• Data bitmap AND inode pointers

• Data bitmap AND group descriptor

• Inode file size AND inode/indirect pointers

…

Pros and CONs of
Redundancy

Redundancy may improve:
- reliability

• RAID-5 parity
• Superblocks in FFS

- performance
• RAID-1 mirroring (reads)
• FFS group descriptor
• FFS bitmaps

Redundancy hurts:
- capacity
- consistency

• Redundancy implies certain combinations of values are illegal

• Illegal combinations: inconsistency

Consistency Examples
Assumptions:
Superblock: field contains total blocks in FS.
DATA = 1024
Inode: field contains pointer to data block.
DATA in {0, 1, 2, …, 1023}

Scenario 1: Consistent or not?
Superblock: field contains total blocks in FS.
DATA = 1024
Inode: field contains pointer to data block.
DATA = 241

Consistent

Scenario 2: Consistent or not?
Superblock: field contains total blocks in FS.
DATA = 1024
node: field contains pointer to data block.
DATA = 2345

Inconsistent

Why is consistency
challenging?

File system may perform several disk writes to redundant blocks

If file system is interrupted between writes, may leave data in
inconsistent state

What can interrupt write operations?

- power loss

- kernel panic

- reboot

Question for You…

File system is appending to a file and must update:
- inode

- data bitmap

- data block

What happens if crash after only updating some blocks?
a) bitmap:

b) data:

c) inode:

d) bitmap and data:

e) bitmap and inode:

f) data and inode:

lost block

nothing bad

point to garbage (what?), another file may use

lost block

point to garbage

another file may use

How can file system
fix Inconsistencies?

Solution #1:
FSCK = file system checker

Strategy:
After crash, scan whole disk for contradictions and “fix” if needed

Keep file system off-line until FSCK completes

For example, how to tell if data bitmap block is consistent?

Read every valid inode+indirect block
If pointer to data block, the corresponding bit should be 1; else bit is 0

Fsck Checks

Hundreds of types of checks over different fields…

Do superblocks match?

Do directories contain “.” and “..”?

Do number of dir entries equal inode link counts?

Do different inodes ever point to same block?

…

How to solve problems?

Link Count (example 1)

Dir Entry

Dir Entry

inode
link_count = 1

How to fix to have consistent file system?

Link Count (example 1)

Dir Entry

Dir Entry

inode
link_count = 2 Simple fix!

Link Count (example 2)

inode
link_count = 1

How to fix???

Link Count (example 2)

inode
link_count = 1

Dir Entry fix!

ls -l /
total 150
drwxr-xr-x 401 18432 Dec 31 1969 afs/
drwxr-xr-x. 2 4096 Nov 3 09:42 bin/
drwxr-xr-x. 5 4096 Aug 1 14:21 boot/
dr-xr-xr-x. 13 4096 Nov 3 09:41 lib/
dr-xr-xr-x. 10 12288 Nov 3 09:41 lib64/
drwx------. 2 16384 Aug 1 10:57 lost+found/
...

Data Bitmap
inode

link_count = 1
block

(number 123)

data bitmap
0011001100

for block 123

How to fix?

Data Bitmap
inode

link_count = 1
block

(number 123)

data bitmap
0011001101

for block 123

Simple fix!

Duplicate Pointers
inode

link_count = 1
block

(number 123)

inode
link_count = 1 How to fix????

Duplicate Pointers
inode

link_count = 1
block

(number 123)

inode
link_count = 1

block
(number 789)

copy

Duplicate Pointers
inode

link_count = 1
block

(number 123)

inode
link_count = 1

block
(number 789)

Simple fix!

But is this correct?

Bad Pointer
inode

link_count = 1

super block
tot-blocks=8000

9999

How to fix???

Bad Pointer
inode

link_count = 1

super block
tot-blocks=8000

Simple fix! (But is this correct?)

Problems with fsck

Problem 1:
• Not always obvious how to fix file system image

• Don’t know “correct” state, just consistent one

• Easy way to get consistency: reformat disk!

Problem 2:
fsck is very sloW

Checking a 600GB disk takes ~70 minutes

ffsck: The Fast File System Checker

Ao Ma, EMC Corporation and University of Wisconsin—Madison; Chris Dragga,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau, University of Wisconsin—Madison

Consistency Solution
#2: Journaling

Goals
• Ok to do some recovery work after crash, but not to read entire

disk
• Don’t move file system to just any consistent state, get correct

state

Strategy
• Atomicity
• Definintion of atomicity for concurrency

• operations in critical sections are not interrupted by operations on
related critical sections

• Definition of atomicity for persistence
• collections of writes are not interrupted by crashes;

either (all new) or (all old) data is visible

Consistency vs
Correctness

Say a set of writes moves the disk from state A to B

A B

consistent states

all states

fsck gives consistency
Atomicity gives A or B.

empty

Journaling
General Strategy

Never delete ANY old data, until, ALL new data is
safely on disk

Ironically, adding redundancy to fix the problem
caused by redundancy.

Fight Redundancy with
Redundancy

Want to replace X with Y. Original:

DISK

X f(X)
redundant

Fight Redundancy with
Redundancy

Want to replace X with Y. Original:

DISK

X f(X) good time to crash

Good time to crash?

Fight Redundancy with
Redundancy

Want to replace X with Y. Original:

DISK

Y f(X) bad time to crash

Good time to crash?

Fight Redundancy with
Redundancy

Want to replace X with Y. Original:

DISK

Y f(Y) good time to crash

Good time to crash?

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

X f(X) good time to crash

Good time to crash?

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

X f(X)

Y

good time to crash

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

X f(X)

Y

good time to crash

f(Y)

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

Y f(X)

Y

good time to crash

f(Y)

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y)

Y

good time to crash

f(Y)

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y) good time to crash

f(Y)

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y) good time to crash

Fight Redundancy with
Redundancy

Want to replace X with Y. With journal:

DISK

Y f(Y) With journaling, it’s
always a good time to

crash!

Question for You…

Develop algorithm to atomically update two blocks:
Write 10 to block 0; write 5 to block 1

Assume these are only blocks in file system…

Time Block 0 Block 1 extra extra extra
1 12 3 0 0 0
2 12 5 0 0 0
3 10 5 0 0 0

Wrong algorithm leads to inconsistent states
(non-atomic updates)

don’t crash here!

Initial Solution:
Journal New Data

Time Block 0 Block 1 0’ 1’ valid
1 12 3 0 0 0
2 12 3 10 0 0
3 12 3 10 5 0
4 12 3 10 5 1
5 10 3 10 5 1
6 10 5 10 5 1
7 10 5 10 5 0

Crash here?
à Old data

Crash here?
àNew data

Usage Scenario: Block 0 stores Alice’s bank account;
Block 1 stores Bob’s bank account; transfer $2 from Alice to Bob

Note: Understand behavior if crash after each write…

void update_accounts(int cash1, int cash2) {

write(cash1 to block 2) // Alice backup

write(cash2 to block 3) // Bob backup

write(1 to block 4) // backup is safe

write(cash1 to block 0) // Alice

write(cash2 to block 1) // Bob

write(0 to block 4) // discard backup

}

void recovery() {

if(read(block 4) == 1) {

write(read(block 2) to block 0) // restore Alice

write(read(block 3) to block 1) // restore Bob

write(0 to block 4) // discard backup

}

}

Terminology

Extra blocks are called a “journal”

The writes to the jounral are a “journal transaction”

The last valid bit written is a “journal commit block”

Problem with Initial
APPROACH: Journal Size

0 N-1

…

N 2N2N-1

Disadvantages?

- slightly < half of disk space is usable
- transactions copy all the data (1/2 bandwidth!)

Fix #1: Small Journals

Still need to first write all new data elsewhere before
overwriting new data

Goal:
• Reuse small area as backup for any block

How?
• Store block numbers in a transaction header

New Layout

0 5

5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

New Layout

A

0 5

B 5,2 A B 1

6 12111 2 3 4 7 8 9 10

journal

transaction: write A to block 5; write B to block 2

Checkpoint: Writing new data to in-place locations

New Layout

A

0 5

B 5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

New Layout

A

0 5

B 5,2 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A

0 5

B 4,6 A B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A

0 5

B 4,6 C B 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

A

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

New Layout

C A T

0 5

B 4,6 C T 1

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

Checkpoint: Writing new data to in-place locations

New Layout

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

Optimizations

1. Reuse small area for journal

2. Barriers

3. Checksums

4. Circular journal

5. Logical journal

Correctness depends
on Ordering

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9, 10, 11, 12, 4, 6, 12

Enforcing total ordering is inefficient. Why?

Instead: Use barriers w/ disk cache flush at key points (when??)

Random writes

Ordering

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

transaction: write C to block 4; write T to block 6

write order: 9,10,11 | 12 | 4,6 | 12

Use barriers at key points in time:
1) Before journal commit, ensure journal transaction entries complete

2) Before checkpoint, ensure journal commit complete
3) Before free journal, ensure in-place updates complete

Optimizations

1. Reuse small area for journal

2. Barriers

3. Checksums

4. Circular journal

5. Logical journal

Checksum
Optimization

C A T

0 5

B 4,6 C T 0

6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11 | 12 | 4,6 | 12

How can we get rid of barrier between (9, 10, 11) and 12 ???

Checksum
Optimization

C A T

0 5

B 4,6 C T (ck)

6 12111 2 3 4 7 8 9 10

journal

write order: 9,10,11,12 | 4,6 | 12

In last transaction block, store checksum of rest of transaction
12 = Cksum(9, 10, 11)

During recovery:
If checksum does not match transaction, treat as not valid

Optimizations

1. Reuse small area for journal

2. Barriers

3. Checksums

4. Circular journal

5. Logical journal

Write Buffering
Optimization

Note: after journal write, there is no rush to checkpoint
• If system crashes, still have persistent copy of written data!

Journaling is sequential, checkpointing is random

Solution? Delay checkpointing for some time

Difficulty: need to reuse journal space

Solution: keep many transactions for un-checkpointed data

T4T3T2T1

Circular Buffer

Journal:

0 128 MB

Keep data also in memory until checkpointed on disk

T4T3T2

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

T5 T4T3T2

Circular Buffer

Journal:

0 128 MB

transaction!

T5 T4T3

Circular Buffer

Journal:

0 128 MB

checkpoint and cleanup

Optimizations

1. Reuse small area for journal

2. Barriers

3. Checksums

4. Circular journal

5. Logical journal

Physical Journal

TxB
length=3

blks=4,6,1

0000000000
0000000000
0000000000
0000100000

inode
…

addr[?]=521
data block

TxE
(checksum)

Physical Journal

TxB
length=3

blks=4,6,1

0000000000
0000000000
0000000000
0000100000

inode
…

addr[?]=521
data block

TxE
(checksum)

Actual changed data is much smaller!

Logical Journal

TxB
length=1

list of
changes

TxE
(checksum)

Logical journals record changes to bytes, not contents of new
blocks

On recovery:
Need to read existing contents of in-place data and (re-)apply
changes

Optimizations

1. Reuse small area for journal

2. Barriers

3. Checksums

4. Circular journal

5. Logical journal

File System
Integration

FS
Journal

Scheduler

Disk

How to avoid writing
all disk blocks Twice?

Observation: some blocks (e.g., user data) are less
important

Strategy: journal all metadata, including:

superblock, bitmaps, inodes, indirects, directories

For regular data, write it back whenever convenient.
Of course, files may contain garbage.

Writeback Journal

?

0 5

B 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?

0 5

B TxB B’ I’ 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?

0 5

B TxB B’ I’ TxE

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?

0 5

B TxB B’ I’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Writeback Journal

?

0 5

B’ TxB B’ I’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

what if we crash now? Solutions?

Ordered Journaling

Still only journal metadata

But write data before the transaction

No leaks of sensitive data!

Ordered Journal

?

0 5

B 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D

0 5

B 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

What happens if crash now?
B indicates D currently free, I does not point to D;

Lose D, but that might be acceptable

Ordered Journal

D

0 5

B TxB I’ B’ 0

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D

0 5

B TxB I’ B’ TxE

6 1211

I

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D

0 5

B TxB I’ B’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Ordered Journal

D

0 5

B’ TxB I’ B’ TxE

6 1211

I’

1 2 3 4 7 8 9 10

journal

transaction: append to inode I

Conclusion

Most modern file systems use journals
• ordered-mode for meta-data is popular

FSCK is still useful for weird cases

- bit flips

- FS bugs

Some file systems don’t use journals, but still (usually) write new
data before deleting old (copy-on-write file systems)

