
Advanced Topics:
Distributed Systems and NFS

Questions answered in this lecture:

What is challenging about distributed systems?

How can a reliable messaging protocol be built on unreliable layers?

What is RPC?

What is the NFS stateless protocol?

What are idempotent operations and why are they useful?

What state is tracked on NFS clients?

Original slides: Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

What is a
Distributed System?

A distributed system is one where a machine I’ve never heard of
can cause my program to fail.

— Leslie Lamport

Definition:
More than 1 machine working together to solve a problem

Examples:
• client/server: web server and web client
• cluster: page rank computation
• peer-to-peer: BitTorrent, Blockchain

Other courses:
• CS 542: Computer Networks
• CS 550: Advanced Operating Systems (this is really a DS course)

http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt

Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

Decentralized trust

New Challenges

System failure: need to worry about partial failure

Consistency: do nodes have most up-to-date copies of data?

Data location: who owns what?

Dynamic Systems: nodes come and go

Communication failure: links unreliable
- bit errors
- packet loss
- node/link failure

Motivating example:
Why are network sockets less reliable than pipes?

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

write waits for space

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

write waits for space

Writer
Process

Pipe

Reader
Processus

er
ke

rn
el

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

Reader
Processus

er
ke

rn
el

Machine B

Router

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

Reader
Processus

er
ke

rn
el

Machine B

Router

what if router’s
buffer is full?

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

Reader
Processus

er
ke

rn
el

Machine B

Router

what if B’s
buffer is full?

Writer
Process

Network Socket
us

er
ke

rn
el

Machine A

?
From A’s view, network and

B are largely a black box.

Communication
Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC

Raw Messages: UDP

UDP : User Datagram Protocol

API:

- reads and writes over socket file descriptors

- messages sent from/to ports to target a process on machine

Provide minimal reliability features:

- messages may be lost

- messages may be reordered

- messages may be duplicated

- only protection: checksums to ensure data not corrupted

Raw Messages: UDP

Advantages

• Lightweight

• Some applications make better reliability decisions
themselves (e.g., video conferencing programs)

Disadvantages
• More difficult to write applications correctly

Reliable Messages:
Layering strategy

TCP: Transmission Control Protocol

Using software, build reliable, logical connections over
unreliable connections

Techniques:

- acknowledgment (ACK)

Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Sender knows message was received

ACK

Sender
[send message]

Receiver

Sender doesn’t receive ACK…
What to do?

Technique #2: Timeout

Sender
[send message]

[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Lost ACK: Issue 1

How long to wait?

Too long?
• System feels unresponsive

Too short?
• Messages needlessly re-sent
• Messages may have been dropped due to overloaded server.

Resending makes overload worse!

Lost Ack: Issue 1

How long to wait?

One strategy: be adaptive

Adjust time based on how long acks usually take

For each missing ack, wait longer between retries

Lost Ack: Issue 2

What does a lost ack really mean?

Sender
[send message]

[timout]

Receiver

Sender
[send message]

[timout]

Receiver

[recv message]
[send ack]

C
as

e
1

C
as

e
2

Lost ACK:
How can sender
tell between these
two cases?

ACK: message received exactly once

No ACK: message may or may not have been received

What if message is command to increment counter?

Proposed Solution

Proposal:
Sender could send an AckAck so receiver knows whether
to retry sending an Ack

Sound good?

Sender
[send message]

[timout]

Receiver

[recv message]
[send ack]

C
as

e
2

Aside:
Two Generals’ Problem

Suppose generals agree after N messages

Did the arrival of the N’th message change decision?

- if yes: then what if the N’th message had been lost?

- if no: then why bother sending N messages?

general 1 general 2

enemy

Reliable Messages:
Layering Strategy

Using software, build reliable, logical connections over
unreliable connections

Techniques:

- acknowledgment

- timeout

- remember sent messages

Technique #3: Receiver
Remembers Messages

Sender
[send message]

[timout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

how does receiver know to ignore?

Solutions

Solution 1: remember every message ever received

Solution 2: sequence numbers
- senders gives each message an increasing unique seq number
- receiver knows it has seen all messages before N
- receiver remembers messages received after N

Suppose message K is received. Suppress message if:
- K < N
- Msg K is already buffered

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums

Buffers messages so arrive in order

Timeouts are adaptive

Communications
Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call

What could be easier than calling a function?

Strategy: create wrappers so calling a function on
another machine feels just like calling a local function

Very common abstraction

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

What it feels like for programmer

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

Actual calls

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

Wrappers

client
wrapper

server
wrapper

RPC Tools

RPC packages help with two components

(1) Runtime library
• Thread pool

• Socket listeners call functions on server

(2) Stub generation
• Create wrappers automatically

• Many tools available (rpcgen, thrift, protobufs)

Wrapper Generation

Wrappers must do conversions:

- client arguments to message

- message to server arguments

- convert server return value to message

- convert message to client return value

Need uniform endianness (wrappers do this)

Conversion is called marshaling/unmarshaling, or serializing/deserializing

Wrapper Generation:
Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions?

- smart RPC package: follow pointers and copy data

Sender
[call]

[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]

[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

RPC over UDP

Strategy: use function return as
implicit ACK

Piggybacking technique

What if function takes a long time?

- then send a separate ACK

Sender
[call]

[udp send]

[recv]
[ack]

Receiver

[recv]
[ack]

[exec call]
…

[return]
[udp send]

Distributed
File Systems

File systems are great use case for distributed systems

Local FS:
processes on same machine access shared files

Network FS:
processes on different machines access shared files in same
way

Goals for distributed
file systems

Fast + simple crash recovery

- both clients and file server may crash

Transparent access

- can’t tell accesses are over the network

- normal UNIX semantics

Reasonable performance

NFS

Think of NFS as more of a protocol than a particular file system

Many companies have implemented NFS:
Oracle/Sun, NetApp, EMC, IBM

We’re looking at NFSv2
• NFSv4 has many changes

Why look at an older protocol?
• Simpler, focused goals

Overview

Architecture

Network API

Write Buffering

Cache

NFS Architecture

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC

Local FS

General Strategy:
Export FS

Local FSLocal FS

Client Server

General Strategy:
Export FS

Local FSLocal FS

Client Server

read

General Strategy:
Export FS

Local FSLocal FS

Client Server

read

General Strategy:
Export FS

Local FSLocal FS

Client Server

General Strategy:
Export FS

Local FSLocal FS

Client Server

NFS

mount

• /dev/sda1 on /

• /dev/sdb1 on /backups

• NFS on /home/kyle

/

backups home

bak1 bak2 bak3

etc bin

kyle

450

p1 p2

.bashrc

General Strategy:
Export FS

Local FSLocal FS

Client Server

NFS
read

General Strategy:
Export FS

Local FSLocal FS

Client Server

NFS
read

Goals for NFS

Fast + simple crash recovery

- both clients and file server may crash

Transparent access

- can’t tell accesses are over the network

- normal UNIX semantics

Reasonable performance

Overview

Architecture

Network API

Write Buffering

Cache

Strategy 1

Attempt: Wrap regular UNIX system calls using RPC

open() on client calls open() on server

open() on server returns fd back to client

read(fd) on client calls read(fd) on server

read(fd) on server returns data back to client

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds
open() = 2

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

read(2)

File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

read(2)

Strategy 1 Problems

What about crashes?

int fd = open(“foo”, O_RDONLY);

read(fd, buf, MAX);

read(fd, buf, MAX);

…

read(fd, buf, MAX);

Imagine server crashes and reboots during reads…

Server crash!

nice if acts like a slow read

Potential Solutions

1. Run some crash recovery protocol upon reboot
• Complex

2. Persist fds on server disk.
• Slow
• What if client crashes? When can fds be garbage collected?

Strategy 2:
put all info in requests

Use “stateless” protocol!
• server maintains no state about clients

• server still keeps other state, of course

Eliminate File
Descriptors

Local FSLocal FS

Client Server

NFS

Strategy 2:
put all info in requests

Use “stateless” protocol!

- server maintains no state about clients

Need API change. One possibility:
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

Specify path and offset each time. Server need not remember
anything from clients.

Pros?

Cons?
Too many path lookups.

Server can crash and reboot transparently to clients.

Strategy 3:
inode requests

inode = open(char *path);

pread(inode, buf, size, offset);

pwrite(inode, buf, size, offset);

This is pretty good! Any correctness problems?

If file is deleted, the inode could be reused
• Inode not guaranteed to be unique over time

Strategy 4:
file handles

fh = open(char *path);

pread(fh, buf, size, offset);

pwrite(fh, buf, size, offset);

File Handle = <volume ID, inode #, generation #>

Opaque to client (client should not interpret internals)

Can NFS Protocol
include Append?

fh = open(char *path);

pread(fh, buf, size, offset);

pwrite(fh, buf, size, offset);

append(fh, buf, size);

Problem with append()?

If RPC library retries, what happens when append() is retried?

Problem: Why is it difficult to replay append()?

Replica Suppression
is Stateful

Sender
[send message]

[timout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

TCP suppresses repeated message

Problem: TCP is stateful
If server crashes, forgets which RPC’s have been executed!

Idempotent Operations

Solution:
Design API so no harm to executing function more than
once

If f() is idempotent, then:
f() has the same effect as f(); f(); … f(); f()

pwrite is idempotent

AAAA
AAAA

file

pwrite
ABBA
AAAA

file

pwrite
ABBA
AAAA

file

pwrite
ABBA
AAAA

file

append is NOT
idempotent

A
file

append
AB

file

append
ABB

file

append
ABBB

file

What operations are
Idempotent?

Idempotent

- any sort of read that doesn’t change anything

- pwrite

Not idempotent

- append

What about these?

- mkdir

- creat

Strategy 4:
file handles

fh = open(char *path);

pread(fh, buf, size, offset);

pwrite(fh, buf, size, offset);

append(fh, buf, size);

File Handle = <volume ID, inode #, generation #>

Strategy 5:
client logic

Build normal UNIX API on client side on top of idempotent,
RPC-based API

Client open() creates a local fd object

It contains:

- file handle

- offset

File Descriptors

Local
FS

Local
FS

Client Server

NFS

client fds

read(5, 1024) fh=<…>
off=123

pread(fh, 123, 1024)
local
FS

fd 5
local

RPC

local

Overview

Architecture

Network API

Write Buffering

Cache

Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

server acknowledges write before write is pushed to disk;
what happens if server crashes?

client:

write A to 0

write B to 1

write C to 2

Server Write Buffer
Lost

server mem: A B C

server disk:

server acknowledges write before write is pushed to disk

client:

write A to 0

write B to 1

write C to 2

Server Write Buffer
Lost

server mem: A B C

server disk: A B C

server acknowledges write before write is pushed to disk

client:

write A to 0

write B to 1

write C to 2

write X to 0

Server Write Buffer
Lost

server mem: X B C

server disk: A B C

server acknowledges write before write is pushed to disk

client:

write A to 0

write B to 1

write C to 2

write X to 0

Server Write Buffer
Lost

server mem: X B C

server disk: X B C

server acknowledges write before write is pushed to disk

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

Server Write Buffer
Lost

server mem: X Y C

server disk: X B C

server acknowledges write before write is pushed to disk

Server Write Buffer
Lost

server mem:

server disk: X B C

crash!

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

server acknowledges write before write is pushed to disk

Server Write Buffer
Lost

server mem:

server disk: X B C

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

server acknowledges write before write is pushed to disk

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

write Z to 2

Server Write Buffer
Lost

server mem: Z

server disk: X B C

server acknowledges write before write is pushed to disk

Server Write Buffer
Lost

server mem: Z

server disk: X B Z

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

write Z to 2

Problem:
No write failed, but disk state doesn’t

match any point in time

Solutions????

Write Buffers

Local FS

Client Server

NFS

write

write buffer

1. Don’t use server write buffer
(persist data to disk before acknowledging write)

Problem: Slow!

Write Buffers

Local FS

Client Server

NFS

write

write buffer

2. use persistent write buffer (more expensive)

write buffer

battery
backed

Overview

Architecture

Network API

Write Buffering

Cache

Cache Consistency

NFS can cache data in three places:

- server memory

- client disk

- client memory

How to make sure all versions are in sync?

Distributed Cache

Local FS

Client 1 Server

NFS
cache: Acache:

Client 2

NFS
cache:

Cache

Local FS

Client 1 Server

NFS
cache: Acache: A

read

Client 2

NFS
cache:

Cache

Local FS

Client 1 Server

NFS
cache: Acache: A

Client 2

NFS
cache: A

read

Cache

Local FS

Client 1 Server

NFS
cache: Acache: B

Client 2

NFS
cache: A

write!

“Update Visibility” problem:
server doesn’t have latest version

What happens if Client 2 (or any other client) reads data?
Sees old version (different semantics than local FS)

Cache

Local FS

Client 1 Server

NFS
cache: Bcache: B

Client 2

NFS
cache: A

flush

“Stale Cache” problem:
client 2 doesn’t have latest version

What happens if Client 2 reads data?
Sees old version (different semantics than local FS)

Cache

Local FS

Client 1 Server

NFS
cache: Bcache: B

Client 2

NFS
cache: B

read

Problem 1:
Update Visibility

When client buffers a write, how can server (and other clients)
see update?

• Client flushes cache entry to server

When should client perform flush????? (3 reasonable options??)

NFS solution: flush on fd close

Local FS

Client 1 Server

NFS
cache: Acache: B

write!

Problem 2:
Stale Cache

Problem: Client 2 has stale copy of data; how can it get the latest?

One possible solution:

• If NFS had state, server could push out update to relevant clients

NFS solution:

• Clients recheck if cached copy is current before using data

Local FS

Server

cache: B

Client 2

NFS
cache: A

Stale Cache Solution

Client cache records time when data block was fetched (t1)

Before using data block, client does a STAT request to server
- get’s last modified timestamp for this file (t2) (not block…)

- compare to cache timestamp

- refetch data block if changed since timestamp (t2 > t1)

Local FS

Server

cache: B

Client 2

NFS
cache: A t1t2

Measure then Build

NFS developers found stat accounted for 90% of server
requests

Why?

Because clients frequently recheck cache

Reducing Stat Calls

Solution: cache results of stat calls

What is the result?

Partial Solution: Make stat cache entries expire after a
given time (e.g., 3 seconds) (discard t2 at client 2)

What is the result?

Local FS

Server

cache: B

Client 2

NFS
cache: A t1 t2

Could read data that is up to 3 seconds old

Never see updates on server!

NFS Summary

NFS handles client and server crashes very well;
robust APIs are often:

- stateless: servers don’t remember clients

- idempotent: doing things twice never hurts

Caching and write buffering is harder in distributed systems,
especially with crashes

Problems:
• Consistency model is odd (client may not see updates until 3

seconds after file is closed)
• Scalability limitations as more clients call stat() on server

