
Advanced Topics:
Distributed Systems and NFS

Questions answered in this lecture:

What is challenging about distributed systems?

How can a reliable messaging protocol be built on unreliable layers?

What is RPC?

What is the NFS stateless protocol?  

What are idempotent operations and why are they useful?

What state is tracked on NFS clients?

Original slides: Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau



What is a 
Distributed System?

A distributed system is one where a machine I’ve never heard of  
can cause my program to fail.

— Leslie Lamport

Definition: 
More than 1 machine working together to solve a problem

Examples: 
• client/server: web server and web client
• cluster: page rank computation
• peer-to-peer: BitTorrent, Blockchain

Other courses:
• CS 542: Computer Networks
• CS 550: Advanced Operating Systems (this is really a DS course)

http://research.microsoft.com/en-us/um/people/lamport/pubs/distributed-system.txt


Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

Decentralized trust



New Challenges

System failure: need to worry about partial failure

Consistency: do nodes have most up-to-date copies of data?

Data location: who owns what?

Dynamic Systems: nodes come and go

Communication failure: links unreliable
- bit errors
- packet loss
- node/link failure

Motivating example:
Why are network sockets less reliable than pipes?
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Communication 
Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC



Raw Messages: UDP

UDP : User Datagram Protocol

API:

- reads and writes over socket file descriptors

- messages sent from/to ports to target a process on machine

Provide minimal reliability features:

- messages may be lost

- messages may be reordered

- messages may be duplicated

- only protection: checksums to ensure data not corrupted



Raw Messages: UDP

Advantages

• Lightweight

• Some applications make better reliability decisions 
themselves (e.g., video conferencing programs)

Disadvantages
• More difficult to write applications correctly



Reliable Messages:
Layering strategy

TCP: Transmission Control Protocol

Using software, build reliable, logical connections over 
unreliable connections

Techniques:

- acknowledgment (ACK)



Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Sender knows message was received



ACK

Sender
[send message]

Receiver

Sender doesn’t receive ACK…  
What to do?



Technique #2: Timeout

Sender
[send message]

[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]



Lost ACK: Issue 1

How long to wait?

Too long?
• System feels unresponsive

Too short?
• Messages needlessly re-sent
• Messages may have been dropped due to overloaded server.  

Resending makes overload worse!



Lost Ack: Issue 1

How long to wait?

One strategy: be adaptive

Adjust time based on how long acks usually take

For each missing ack, wait longer between retries



Lost Ack: Issue 2

What does a lost ack really mean?



Sender
[send message]

[timout]

Receiver

Sender
[send message]

[timout]

Receiver

[recv message]
[send ack]

C
as

e 
1

C
as

e 
2

Lost ACK: 
How can sender
tell between these
two cases?

ACK: message received exactly once

No ACK: message may or may not have been received

What if message is command to increment counter?



Proposed Solution

Proposal: 
Sender could send an AckAck so receiver knows whether 
to retry sending an Ack

Sound good?

Sender
[send message]

[timout]

Receiver

[recv message]
[send ack]

C
as

e 
2



Aside: 
Two Generals’ Problem

Suppose generals agree after N messages

Did the arrival of  the N’th message change decision?

- if  yes: then what if  the N’th message had been lost?

- if  no: then why bother sending N messages?

general 1 general 2

enemy



Reliable Messages: 
Layering Strategy

Using software, build reliable, logical connections over 
unreliable connections

Techniques:

- acknowledgment

- timeout

- remember sent messages



Technique #3: Receiver 
Remembers Messages

Sender
[send message]

[timout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

how does receiver know to ignore?



Solutions

Solution 1: remember every message ever received

Solution 2: sequence numbers
- senders gives each message an increasing unique seq number
- receiver knows it has seen all messages before N 
- receiver remembers messages received after N

Suppose message K is received.  Suppress message if:
- K < N
- Msg K is already buffered



TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums

Buffers messages so arrive in order

Timeouts are adaptive



Communications 
Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC



RPC

Remote Procedure Call

What could be easier than calling a function?

Strategy: create wrappers so calling a function on 
another machine feels just like calling a local function

Very common abstraction



RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

What it feels like for programmer



RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

Actual calls



RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

Wrappers

client
wrapper

server
wrapper



RPC Tools

RPC packages help with two components

(1) Runtime library
• Thread pool

• Socket listeners call functions on server

(2) Stub generation
• Create wrappers automatically

• Many tools available (rpcgen, thrift, protobufs)



Wrapper Generation

Wrappers must do conversions:

- client arguments to message

- message to server arguments

- convert server return value to message

- convert message to client return value

Need uniform endianness (wrappers do this)

Conversion is called marshaling/unmarshaling, or serializing/deserializing



Wrapper Generation: 
Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions?

- smart RPC package: follow pointers and copy data



Sender
[call]

[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]

[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?



RPC over UDP

Strategy: use function return as 
implicit ACK

Piggybacking technique

What if  function takes a long time?

- then send a separate ACK

Sender
[call]

[udp send]

[recv]
[ack]

Receiver

[recv]
[ack]

[exec call]
…

[return]
[udp send]



Distributed 
File Systems

File systems are great use case for distributed systems

Local FS: 
processes on same machine access shared files

Network FS: 
processes on different machines access shared files in same 
way



Goals for distributed 
file systems

Fast + simple crash recovery

- both clients and file server may crash

Transparent access

- can’t tell accesses are over the network

- normal UNIX semantics

Reasonable performance



NFS

Think of  NFS as more of  a protocol than a particular file system

Many companies have implemented NFS:
Oracle/Sun, NetApp, EMC, IBM

We’re looking at NFSv2
• NFSv4 has many changes

Why look at an older protocol?
• Simpler, focused goals



Overview

Architecture

Network API

Write Buffering

Cache



NFS Architecture

File
Server

Client

Client

Client

Client

RPC

RPC

RPC

RPC

Local FS



General Strategy: 
Export FS

Local FSLocal FS

Client Server
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General Strategy: 
Export FS

Local FSLocal FS

Client Server

NFS

mount



• /dev/sda1 on /

• /dev/sdb1 on /backups

• NFS on /home/kyle

/

backups home

bak1 bak2 bak3

etc bin

kyle

450

p1 p2

.bashrc



General Strategy: 
Export FS

Local FSLocal FS

Client Server

NFS
read



General Strategy: 
Export FS

Local FSLocal FS

Client Server

NFS
read



Goals for NFS

Fast + simple crash recovery

- both clients and file server may crash

Transparent access

- can’t tell accesses are over the network

- normal UNIX semantics

Reasonable performance



Overview

Architecture

Network API

Write Buffering

Cache



Strategy 1

Attempt: Wrap regular UNIX system calls using RPC

open() on client calls open() on server

open() on server returns fd back to client

read(fd) on client calls read(fd) on server

read(fd) on server returns data back to client



File Descriptors

Local FSLocal FS

Client Server

NFS

client fds



File Descriptors

Local FSLocal FS

Client Server

NFS

client fds
open() = 2



File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

read(2)



File Descriptors

Local FSLocal FS

Client Server

NFS

client fds

read(2)



Strategy 1 Problems

What about crashes?

int fd = open(“foo”, O_RDONLY);

read(fd, buf, MAX);

read(fd, buf, MAX);

…

read(fd, buf, MAX);

Imagine server crashes and reboots during reads…

Server crash!

nice if acts like a slow read



Potential Solutions

1. Run some crash recovery protocol upon reboot
• Complex

2. Persist fds on server disk.
• Slow
• What if  client crashes? When can fds be garbage collected?



Strategy 2: 
put all info in requests

Use “stateless” protocol!
• server maintains no state about clients

• server still keeps other state, of  course



Eliminate File 
Descriptors

Local FSLocal FS

Client Server

NFS



Strategy 2: 
put all info in requests

Use “stateless” protocol!

- server maintains no state about clients

Need API change.  One possibility:
pread(char *path, buf, size, offset);
pwrite(char *path, buf, size, offset);

Specify path and offset each time.  Server need not remember
anything from clients.

Pros?

Cons?
Too many path lookups.

Server can crash and reboot transparently to clients.



Strategy 3: 
inode requests

inode = open(char *path);

pread(inode, buf, size, offset);

pwrite(inode, buf, size, offset);

This is pretty good!  Any correctness problems?

If  file is deleted, the inode could be reused 
• Inode not guaranteed to be unique over time



Strategy 4: 
file handles

fh = open(char *path);

pread(fh, buf, size, offset);

pwrite(fh, buf, size, offset);

File Handle = <volume ID, inode #, generation #>

Opaque to client (client should not interpret internals)



Can NFS Protocol 
include Append?

fh = open(char *path);

pread(fh, buf, size, offset);

pwrite(fh, buf, size, offset);

append(fh, buf, size);

Problem with append()?

If  RPC library retries, what happens when append() is retried?

Problem: Why is it difficult to replay append()?



Replica Suppression 
is Stateful

Sender
[send message]

[timout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

TCP suppresses repeated message

Problem: TCP is stateful
If server crashes, forgets which RPC’s have been executed!



Idempotent Operations

Solution: 
Design API so no harm to executing function more than 
once

If  f() is idempotent, then:
f() has the same effect as f(); f(); … f(); f()



pwrite is idempotent

AAAA
AAAA

file

pwrite
ABBA
AAAA

file

pwrite
ABBA
AAAA

file

pwrite
ABBA
AAAA

file



append is NOT 
idempotent

A
file

append
AB

file

append
ABB

file

append
ABBB

file



What operations are 
Idempotent?

Idempotent

- any sort of  read that doesn’t change anything

- pwrite

Not idempotent

- append

What about these?

- mkdir

- creat



Strategy 4: 
file handles

fh = open(char *path);

pread(fh, buf, size, offset);

pwrite(fh, buf, size, offset);

append(fh, buf, size);

File Handle = <volume ID, inode #, generation #>



Strategy 5: 
client logic

Build normal UNIX API on client side on top of  idempotent, 
RPC-based API

Client open() creates a local fd object 

It contains:

- file handle

- offset 



File Descriptors

Local 
FS

Local 
FS

Client Server

NFS

client fds

read(5, 1024) fh=<…>
off=123

pread(fh, 123, 1024)
local
FS

fd 5
local

RPC

local
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Write Buffers

Local FS

Client Server

NFS

write

write bufferwrite buffer

server acknowledges write before write is pushed to disk;
what happens if server crashes?



client:

write A to 0

write B to 1

write C to 2

Server Write Buffer 
Lost

server mem: A B C

server disk: 

server acknowledges write before write is pushed to disk
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client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

Server Write Buffer 
Lost

server mem: X Y C

server disk: X B C

server acknowledges write before write is pushed to disk



Server Write Buffer 
Lost

server mem: 

server disk: X B C

crash!

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

server acknowledges write before write is pushed to disk



Server Write Buffer 
Lost

server mem: 

server disk: X B C

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

server acknowledges write before write is pushed to disk



client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

write Z to 2

Server Write Buffer 
Lost

server mem: Z

server disk: X B C

server acknowledges write before write is pushed to disk



Server Write Buffer 
Lost

server mem: Z

server disk: X B Z

client:

write A to 0

write B to 1

write C to 2

write X to 0

write Y to 1

write Z to 2

Problem: 
No write failed, but disk state doesn’t 

match any point in time

Solutions????



Write Buffers

Local FS

Client Server

NFS

write

write buffer

1. Don’t use server write buffer
(persist data to disk before acknowledging write)

Problem: Slow!



Write Buffers

Local FS

Client Server

NFS

write

write buffer

2. use persistent write buffer (more expensive)

write buffer

battery
backed



Overview

Architecture

Network API

Write Buffering

Cache



Cache Consistency

NFS can cache data in three places:

- server memory

- client disk

- client memory

How to make sure all versions are in sync?



Distributed Cache

Local FS

Client 1 Server

NFS
cache: Acache: 

Client 2

NFS
cache: 



Cache

Local FS

Client 1 Server

NFS
cache: Acache: A

read

Client 2

NFS
cache: 



Cache

Local FS

Client 1 Server

NFS
cache: Acache: A

Client 2

NFS
cache: A

read



Cache

Local FS

Client 1 Server

NFS
cache: Acache: B

Client 2

NFS
cache: A

write!

“Update Visibility” problem:
server doesn’t have latest version

What happens if Client 2 (or any other client) reads data?  
Sees old version (different semantics than local FS)



Cache

Local FS

Client 1 Server

NFS
cache: Bcache: B

Client 2

NFS
cache: A

flush

“Stale Cache” problem: 
client 2 doesn’t have latest version

What happens if Client 2 reads data?  
Sees old version (different semantics than local FS)



Cache

Local FS

Client 1 Server

NFS
cache: Bcache: B

Client 2

NFS
cache: B

read



Problem 1: 
Update Visibility

When client buffers a write, how can server (and other clients) 
see update?

• Client flushes cache entry to server

When should client perform flush????? (3 reasonable options??)

NFS solution: flush on fd close

Local FS

Client 1 Server

NFS
cache: Acache: B

write!



Problem 2: 
Stale Cache

Problem: Client 2 has stale copy of  data; how can it get the latest?

One possible solution:

• If  NFS had state, server could push out update to relevant clients

NFS solution: 

• Clients recheck if  cached copy is current before using data

Local FS

Server

cache: B

Client 2

NFS
cache: A



Stale Cache Solution

Client cache records time when data block was fetched (t1)

Before using data block, client does a STAT request to server
- get’s last modified timestamp for this file (t2) (not block…)

- compare to cache timestamp

- refetch data block if  changed since timestamp (t2 > t1)

Local FS

Server

cache: B

Client 2

NFS
cache: A t1t2



Measure then Build

NFS developers found stat accounted for 90% of  server 
requests

Why?  

Because clients frequently recheck cache



Reducing Stat Calls

Solution: cache results of  stat calls

What is the result? 

Partial Solution: Make stat cache entries expire after a 
given time (e.g., 3 seconds) (discard t2 at client 2)

What is the result?

Local FS

Server

cache: B

Client 2

NFS
cache: A t1 t2

Could read data that is up to 3 seconds old

Never see updates on server!



NFS Summary

NFS handles client and server crashes very well; 
robust APIs are often:

- stateless: servers don’t remember clients

- idempotent: doing things twice never hurts

Caching and write buffering is harder in distributed systems, 
especially with crashes

Problems:
• Consistency model is odd (client may not see updates until 3 

seconds after file is closed)
• Scalability limitations as more clients call stat() on server


