
Advanced Topics:

Google File System (GFS)

Questions answered in this lecture:

What are the requirements for GFS?

What techniques does GFS use to scale?

What is the role of the master vs. chunkservers in GFS?

What happens if the master or a chunkserver crashes?

How are replicas kept consistent?

Slides: Andrea C. Arpaci-Dusseau

Remzi H. Arpaci-Dusseau

GFS Motivation

Measure then build

Google workload characteristics

• huge files (GBs); usually read in their entirety

• almost all writes are appends

• concurrent appends common

• high throughput is valuable

• low latency is not

Computing environment:

• 1000s of machines

• Machines sometimes fail (both permanently and temporarily)

Why not use NFS?

1. Scalability : Must store > 100s of Terabytes of file data

NFS only exports a local FS on one machine to other clients

GFS solution: store data on many server machines

2. Failures: Must handle temporary and permanent failures

NFS only recovers from temporary failure

- not permanent disk/server failure

- recovery means making reboot invisible

- technique: retry (stateless and idempotent protocol helps)

GFS solution: replication and failover (like RAID)

New File System: GFS

Google published details in 2003

• Has evolved since then…

Open source implementation: Hadoop Distributed FS (HDFS)

Opportunity for

Co-design
Do not need general-purpose file system

• Does not need to be backwards-compatible with existing applications

• Does not need to adhere to POSIX specification

Opportunity to build FS and application together

• Make sure applications can deal with FS quirks

Avoid difficult FS features:

• Read directory (make new directory structure)

• Links

• Reading from an open, deleted file

What Workloads?

MapReduce (previous lecture)

• read entire input file (in chunks)

• compute over data

• append to separate output files

Producer/consumer

• many producers append work to shared file concurrently

• one consumer reads and does work and appends to output file

How to handle appends that are not idempotent?

• Require applications to handle duplicate records in data

• Add unique identifiers to records

GFS Overview

Motivation

Architecture

Master metadata

Chunkserver data

Machines FAIL

Fact: Machines storing data may fail

Implications for GFS

• Must replicate data (similar to RAID)

• Must recover (respond to machines stopping at starting)

1) Replication

Less structured than RAID (no static computation to determine locations)

- machines come and go

- capacity may vary

- different data may have different replication levels (e.g., 3 vs 5 copies)

Problem: How to map logical to physical locations?

Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

Each server holds “chunks” of data

2) Recovery
Server 1 Server 2 Server 3 Server 4 Server 5

A A AB BB C C C

2) Recovery

Machine may come back, or may be dead forever

Must identify and replicate lost data on other servers

Server 1 Server 2 Server 3 ??? Server 5

A A AB BB C C CA B

2) Recovery
Server 1 Server 2 Server 3 Server 5

A ABB C C CA B

Server 4

A B

Machine may come back; disk space wasted with extra replicas

2) Recovery
Server 1 Server 2 Server 3 Server 5

A ABB C C CA B

Server 4

A B

Identify number of replicas and choose to remove extras

2) Recovery
Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A B

Identify number of replicas and choose to remove extras

Observation

Finding copies of data + maintaining replicas is difficult without

global view of data

Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A

GFS Architecture

Master

Clients Chunk

Servers

(one)

(many)

(many)

[metadata]

[data]

metadata consistency easy

large capacity

local FS’s

No caching!

[workload]

What is a Chunk?

Break GFS files into large chunks (e.g., 64MB);

unit of replication; chunks not split across chunkservers

Why this size?

• Match chunk size to input size for each mapper in MapReduce

Chunk servers store physical chunks in Linux files

Master maps logical chunk to physical chunk locations

Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A

GFS Overview

Motivation

Architecture

Master metadata

Chunkserver data

Master Metadata

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

lookup 924

Client wants to read a chunk (identified with unique id num)

How does it find where that chunk lives?

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

w2,w5,w7

Client can read from any of the listed replicas

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

read 924:

offset=0

size=1MB

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

data

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

read 924:

offset=1MB

size=1MB

Client tracks current offset of read within each 64MB chunk

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

data

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

read 924:

offset=2MB

size=1MB

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

data

Client Reads a Chunk

Master

chunk map:

logical

924

521

…

phys

w2,w5,w7

w2,w9,w11

…

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

Master is not bottleneck because not involved in most reads

1 master can handle many clients…

How does client know what chunk id num to read?

File Namespace

Master

chunk map:
logical

924

phys

w2,w5,w7

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

… …

file namespace:
/foo/bar => 924,813

/var/log => 123,999

lookup /foo/bar

Master maps path name to logical chunk list

(expect many chunks per file)

1. Client sends path name to master

2. Master sends chunk locations to client

3. Client reads/writes to workers directly

File Namespace

Master

chunk map:
logical

924

phys

w2,w5,w7

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

… …

file namespace:
/foo/bar => 924,813

/var/log => 123,999

924: [w2,w5,w7]

813: […]

Master maps path name to logical chunk list

1. Client sends path name to master

2. Master sends chunk locations to client

3. Client reads/writes to workers directly

File Namespace

Master

chunk map:
logical

924

phys

w2,w5,w7

Worker w2

Local FS
/chunks/924 => data1

/churks/521 => data2

…

client

… …

file namespace:
/foo/bar => 924,813

/var/log => 123,999

read 924:

offset=0MB

size=1MB

How to pick

Chunk Size?

GFS uses large chunks, e.g., 64MB

(coordinate with MapReduce)

How does chunk size affect size of master data structs?

Master

chunk map:
logical

924

813

phys

w2,w5,w7

w1,w8,w9
… …

file namespace:
/foo/bar => 924,813

/var/log => 123,999

What if Chunk Size Doubles?

lists half as long

half as many entries

Any disadvantages to making chunks huge?

Cannot parallelize I/O as much

What about internal

Fragmentation?

Master:

Crashes + Consistency

Advantage to minimizing master
data structures:

File namespace and chunk map fit
100% in RAM

• Advantage?

• Fast (Allows master to keep up with
1000’s of workers)

• Disadvantage?

• Limits size of namespace to what fits in
RAM

• What if master crashes?

Master

chunk map:
logical

924

813
… …

file namespace:
/foo/bar => 924,813

/var/log => 123,999

How to Handle

Master crashing

Two data structures to worry about

How to make namespace persistent?

Write updates to namespace to multiple logs

Where should these logs be located?

• Local disk (disk is never read except for crash)

• Disks on backup masters

• Shadow read-only masters (may lag state, temporary access)

Result: High availability when master crashes!

What about chunk map?

Master

chunk map:
logical

924

813
… …

file namespace:
/foo/bar => 924,813

/var/log => 123,999

Chunk Map

Consistency

Don’t persist chunk map on master

Approach:

After crash (and periodically for cleanup), master asks each
chunkserver which chunks it has

What if chunk server dies too?

Doesn’t matter, that worker can’t serve chunks anyway

WorkerMaster

A B C D

I have

{A,B,C,D}

What if one of chunk server’s disks dies?

GFS Overview

Motivation

Architecture

Master metadata

Chunkserver data

Chunkserver

Consistency

How does GFS ensure physical chunks on different

chunkservers are consistent with one another?

Corruption: delete chunks that violate checksum

• Master eventually sees chunk has < desired replication

What about concurrent writes (or appends) from different

clients? (e.g., multiple producers)

Server 1 Server 2 Server 3 Server 5

ABB C C CA B

Server 4

A

AAAA

AAAA

AAAA

chunk 143

(replica 1)

AAAA

AAAA

AAAA

chunk 143

(replica 2)

AAAA

AAAA

AAAA

chunk 143

(replica 3)

AAAA

AAAA

AAAA

chunk 143

(replica 1)

AAAA

AAAA

AAAA

chunk 143

(replica 2)

AAAA

AAAA

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

BBBB

AAAA

chunk 143

(replica 1)

AAAA

AAAA

AAAA

chunk 143

(replica 2)

AAAA

AAAA

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

BBBB

AAAA

chunk 143

(replica 1)

AAAA

AAAA

AAAA

chunk 143

(replica 2)

AAAA

CCCC

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

BBBB

AAAA

chunk 143

(replica 1)

AAAA

BBBB

AAAA

chunk 143

(replica 2)

AAAA

CCCC

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

BBBB

AAAA

chunk 143

(replica 1)

AAAA

CCCC

AAAA

chunk 143

(replica 2)

AAAA

CCCC

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

BBBB

AAAA

chunk 143

(replica 1)

AAAA

CCCC

AAAA

chunk 143

(replica 2)

AAAA

BBBB

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

CCCC

AAAA

chunk 143

(replica 1)

AAAA

CCCC

AAAA

chunk 143

(replica 2)

AAAA

BBBB

AAAA

chunk 143

(replica 3)

write

BBBB

write

CCCC

AAAA

CCCC

AAAA

chunk 143

(replica 1)

AAAA

CCCC

AAAA

chunk 143

(replica 2)

AAAA

BBBB

AAAA

chunk 143

(replica 3)

AAAA

CCCC

AAAA

chunk 143

(replica 1)

AAAA

CCCC

AAAA

chunk 143

(replica 2)

AAAA

BBBB

AAAA

chunk 143

(replica 3)

Chunks disagree,

but all checksums are correct,

all writes suceeded,

and no machines ever failed!!

Ideas?

Chunkserver

Consistency

GFS must “serialize” writes across chunkservers

• Decide an order of writes and ensure order is followed by

every chunkserver

How to decide on an order?

• don’t want to overload master

• let one replica be primary and decide order of writes from

clients

Steps of GFS write

Performance Optimization: Data flows w/ most efficient network path

Correctness: Control flow ensures data committed in same order

Primary: assign seq num to each write

Primary Replica

Master chooses primary replica for each logical chunk

What if primary dies?

Give primary replica a lease that expires after 1 minute

If master wants to reassign primary, and it can’t reach old

primary, just wait 1 minute

GFS Summary

Fight failure with replication

Metadata consistency is hard, centralize to make it easier

Data consistency is easier, distribute it for scalability

