
Scheduling
Questions Answered in this Lecture:
• What are some different scheduling policies?
• When do they work well?

Hale | CS 450 1



Announcements

• Project 1a out
• Project 1a: If I can’t associate your code with you, your project will 

not be graded (i.e, zero). Read instructions carefully!
• Reading: go read OSTEP Chapters 7 & 8, plus other readings I’ve 

linked
• Read the excerpt on process scheduling code for Linux
• Note on plagiarism

Hale | CS 450 2



CPU Virtualization: Two Components

• Dispatcher -> mechanism (last week)
• How do we switch from one process to another (ctx switch)
• How do we save state of one process?
• How do we interrupt the running process?
• How do we pick the next one to run?

• Scheduler -> policy (today)

Hale | CS 450 3



Scheduling

• This is an old problem! Not just applicable to OS (or computing 
systems for that matter)
• First well studied in the operations research (OR) community
• “How do I best schedule my workers on the factory floor?”
• “In what order to I send items down my assembly line?”

• You’ll never be able to forget this stuff at the grocery store
• Or the DMV
• Or the gate at O’Hare
• WHY CANT THE WORLD BE AS EFFICIENT AS MY OS?!

Hale | CS 450 4



Abstracting Away

• The problem put generally: 
• n resources
• k users (k is almost always >> n)
• Come up with a mapping in the time domain from users to resources

• Someone’s got to wait
• We need queues…..
• Queueing Theory

Hale | CS 450 5



The Parlance

• Workload: Intuitively, the set of things that’ll use our scheduler
• Accurately, the set of job descriptions (arrival time, runtime) 
• As process moves between CPU (doing work) and I/O (waiting for something 

else to do the work), process goes from ready queue to blocked queue

• Scheduler: Code (logic) that decides which job to run
• Metric: a measurement of quality

Hale | CS 450 6



Metrics we care about

• Turnaround time: time it takes for the job to complete once they’re 
submitted (completion_time – arrival_time)
• Response time: time it takes for interactive jobs to become active 

(initial_schedule_time – arrival_time)
• Waiting time: Job should not be queued (in the ready q) for long
• Throughput: completed jobs per unit time
• Utilization: expensive devices (CPUs, GPUs, etc.) should remain busy
• Overhead: number of context switches
• Fairness: jobs get same amount of CPU time over some interval

Hale | CS 450 7



Workload Assumptions

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Hale | CS 450 8



Scheduling Basics

Hale | CS 450 9

Scheduling 
Policies:

FIFO
SJF (SJN, SPN)
STCF
RR

Workloads:
arrival_time
run_time

Metrics:
turnaround_time
response_time



Example: Workload, scheduler, metric

Hale | CS 450 10

FIFO: First In, First Out 
- also called FCFS (first come first served)
- run jobs in arrival_time order

What is our turnaround?: completion_time - arrival_time

Job Arrival_time (s) Run_time (s)
A ~0 10
B ~0 10

C ~0 10



FIFO: Event Trace
Time Event
0 A arrives
0 B arrives
0 C arrives
0 run A
10 complete A
10 run B
20 complete B
20 run C
30 complete C

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

Hale | CS 450 11



FIFO: (Identical Jobs)

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

A B C

0 20 40 60 80
Gantt chart: 
Illustrates how jobs are scheduled over time on a CPU

Hale | CS 450 12



FIFO: (Identical Jobs)

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

A B C

0 20 40 60 80

[A,B,C arrive]

What is the average turnaround time?
Def: turnaround_time = completion_time - arrival_time

Hale | CS 450 13



FIFO: (Identical Jobs)

JOB arrival_time (s) run_time (s)
A ~0 10
B ~0 10
C ~0 10

A B C

0 20 40 60 80

What is the average turnaround time?
(10+20+30)/3 = 20s

A: 10s
B: 20s
C: 30s

Hale | CS 450 14



Scheduling Basics

Hale | CS 450 15

Scheduling 
Policies:

FIFO
SJF (SJN, SPN)
STCF
RR

Workloads:
arrival_time
run_time

Metrics:
turnaround_time
response_time



Workload Assumptions

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Hale | CS 450 16



Any Problematic Workloads for FIFO?

Workload: ?

Scheduler: FIFO

Metric: turnaround is high

Hale | CS 450 17



Example: Big First Job
JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

Draw Gantt chart for this workload and policy…
What is the average turnaround time? 

Hale | CS 450 18



A CB

0 20 40 60 80

Average turnaround time: 70s

A: 60s
B: 70s
C: 80s

Example: Big First Job
JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

Hale | CS 450 19



Convoy Effect

Hale | CS 450 20



Passing the Tractor
Problem with Previous Scheduler: 

FIFO: Turnaround time can suffer when short jobs must wait for 
long jobs

New scheduler: 
SJF (Shortest Job First)
Also (Shortest job next SJN, shortest process next (SPN))
Choose job with smallest run_time

Hale | CS 450 21



Shortest Job First

JOB arrival_time (s) run_time (s)
A ~0 60
B ~0 10
C ~0 10

What is the average turnaround time with SJF? 

Hale | CS 450 22



SJF Turnaround Time

ACB

0 20 40 60 80

A: 80s
B: 10s
C: 20s

What is the average turnaround time with SJF? 
(80 + 10 + 20) / 3 = ~36.7s

For minimizing average turnaround time (with no preemption):
SJF is provably optimal 

Moving shorter job before longer job improves turnaround time of short 
job more than it harms turnaround time of long job

Average turnaround 
with FIFO: 70s

Hale | CS 450 23



Scheduling Basics

Hale | CS 450 24

Scheduling 
Policies:

FIFO
SJF (SJN, SPN)
STCF
RR

Workloads:
arrival_time
run_time

Metrics:
turnaround_time
response_time



Workload Assumptions

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Hale | CS 450 25



Shortest Job First (Arrival Time)

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

What is the average turnaround time with SJF?

Hale | CS 450 26



Stuck Behind a Tractor Again

A CB

0 20 40 60 80

[B,C arrive]

What is the average turnaround time?

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

(60 + (70 – 10) + (80 – 10)) / 3 = 63.3s

Hale | CS 450 27



Preemptive Scheduling
Prev schedulers: 
• FIFO and SJF are non-preemptive
• Only schedule new job when previous job voluntarily relinquishes CPU 

(performs I/O or exits)
New scheduler: 
• Preemptive: Potentially schedule different job at any point by taking 

CPU away from running job
• STCF (Shortest Time-to-Completion First)
• Always run job that will complete the quickest

Hale | CS 450 28



NON-PREEMPTIVE: SJF

A CB

0 20 40 60 80

Average turnaround time: 

[B,C arrive]

JOB arrival_time (s) run_time (s)
A ~0 60
B ~10 10
C ~10 10

(60 + (70 – 10) + (80 – 10)) / 3 = 63.3s

Hale | CS 450 29



Preemptive: STCF

A CB

0 20 40 60 80

Average turnaround time with STCF?

A

A: 80s
B: 10s
C: 20sJOB arrival_time (s) run_time (s)

A ~0 60
B ~10 10
C ~10 10

[B,C arrive]

36.6
Average turnaround time with SJF: 63.3sHale | CS 450 30



Scheduling Basics

Hale | CS 450 31

Scheduling 
Policies:

FIFO
SJF (SJN, SPN)
STCF
RR

Workloads:
arrival_time
run_time

Metrics:
turnaround_time
response_time



Response Time

Hale | CS 450 32

• Sometimes we care about when a job starts instead of when 
it finishes
• New metric: 
• response_time = first_run_time – arrival_time



Response vs. Turnaround

A

0 20 40 60 80

B’s turnaround: 20s

B

[B arrives]

B’s response: 10s

Hale | CS 450 33



Round-Robin Scheduler

Prev schedulers: 
FIFO, SJF, and STCF can have poor response time

New scheduler: RR (Round Robin)
Alternate ready processes every fixed-length time-slice

Hale | CS 450 34



FIFO vs RR

0 5 10 15 20

A B C

0 5 10 15 20

ABC …

Avg Response Time?
(0+1+2)/3 = 1

Avg Response Time?
(0+5+10)/3 = 5

Other reasons why RR could be better?
If don’t know run-time of each job, gives short jobs a chance to 
run and finish fast

In what way is RR worse?
Ave. turn-around time with equal job lengths is horrible

Hale | CS 450 35



Scheduling Basics

Hale | CS 450 36

Scheduling 
Policies:

FIFO
SJF (SJN, SPN)
STCF
RR

Workloads:
arrival_time
run_time

Metrics:
turnaround_time
response_time



Workload Assumptions

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known

Hale | CS 450 37



Not I/O Aware

A

0 20 40 60 80

Disk:

A BCPU:

A

A A

Don’t let Job A hold on to CPU while blocked waiting for disk

Hale | CS 450 38



I/O Aware (Overlap)

A

0 20 40 60 80

Disk:

A1 BCPU:

A

A2 A3BB

Treat Job A as 3 separate CPU bursts
When Job A completes I/O, another Job A_N is ready

Each CPU burst is shorter than Job B, so with SCTF, 
Job A preempts Job B

Hale | CS 450 39



Workload Assumptions

1. Each job runs for the same amount of time
2. All jobs arrive at the same time
3. All jobs only use the CPU (no I/O)
4. Run-time of each job is known
(Need smarter, fancier scheduler)

Hale | CS 450 40



MLFQ 
(Multi-Level Feedback Queue)

Goal: general-purpose scheduling
Must support two job types with distinct goals

- “interactive” programs care about response time
- “batch” programs care about turnaround time

Approach: multiple levels of round-robin;
each level has higher priority than lower levels and preempts them

Hale | CS 450 41



Priorities
Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR

A

B

C

Q3

Q2

Q1

Q0 D

“Multi-level”

How to know how to set priority?

Approach 1: nice
Approach 2: history “feedback”

Hale | CS 450 42



History

• Use past behavior of process to predict future behavior
• Common technique in systems

• Processes alternate between I/O and CPU work
• Guess how CPU burst (job) will behave based on past CPU 

bursts (jobs) of this process

Hale | CS 450 43



More MLFQ Rules

Rule 1: If priority(A) > Priority(B), A runs
Rule 2: If priority(A) == Priority(B), A & B run in RR
More rules:

Rule 3: Processes start at top priority
Rule 4: If job uses whole slice, demote process
(longer time slices at lower priorities)

Hale | CS 450 44



0 5 10 15 20

One Long Job (Example)

Q3

Q2

Q1

Q0

Hale | CS 450 45



120 140 160 180 200

An Interactive Process Joins

Q3

Q2

Q1

Q0

Interactive process never uses entire time slice, so never demoted

Hale | CS 450 46



120 140 160 180 200

Problems with MLFQ?
Q3

Q2

Q1

Q0

Problems
- unforgiving + starvation
- gaming the system

Hale | CS 450 47



120 140 160 180 200

Prevent Starvation
Q3

Q2

Q1

Q0

Problem: Low priority job may never get scheduled

Periodically boost priority of all jobs (or all jobs that haven’t 
been scheduled) Hale | CS 450 48



120 140 160 180 200

Prevent Gaming
Q3

Q2

Q1

Q0

Problem: High priority job could trick scheduler and get more 
CPU by performing I/O right before time-slice ends

Fix: Account for job’s total run time at priority level 
(instead of just this time slice); 
downgrade when exceed thresholdHale | CS 450 49



Programming Patterns: The Bridge Pattern

• Used to separate policy from mechanism
• More generally, separate an implementation from its abstraction

Hale | CS 450 50



Gang of Four (GOF) Book

Hale | CS 450 51



Proc * candidate = curr;
Schedule () {

for (I = 0; I < NUM_PROCS; i++) {
if (procs[i].priority > candidate) 

candidate = procs[i];
}

}
switch_to(candidate);

Hale | CS 450 52



The Bridge

Proc * next;
Schedule () {

next = scheduler->policy->choose_next(sched_state);
switch_to(next);

}

Hale | CS 450 53



The Bridge

Proc * next;
Schedule () {

next = scheduler->policy->choose_next(sched_state);
switch_to(next);

}

Hale | CS 450 54



Hale | CS 450 55

Linux 0.1



TODO

• Work on project 1a! Due next Monday
• Do your reading, check out optional reading
• Multiprocessor scheduling
• Lottery Scheduling
• Linux processes and scheduler

Hale | CS 450 56


