
Virtual Memory
Questions Answered in this Lecture:
• What is an address space? (quick review)
• How do we implement virtual memory? (relocation, base+bounds, segmentation)
• What hardware do we need?

Hale | CS 450 1

Announcements

• Project 1a due Monday
• We go live Tues. Hermann Hall 100 (auditorium)
• Currently 33 people interested in in-person attendance. Max is 40.
• You must wear a mask
• I will be passing around an attendance sheet (for contact tracing)

• Reading: OSTEP 13, 15, 16 + optionals

Hale | CS 450 2

A bit of history on timesharing
systems

Hale | CS 450 3

1955-56: MIT TX-0

• Early computer using transitors (which were still
very new at the time)

• Developed at MIT’s Lincoln Laboratory
• Used vacuum tube-based transistor packaging
• Heavily influences DEC’s PDP-1

Hale | CS 450 4

Hale | CS 450 5

Jack Dennis

• Worked on TX line. Helped cultivate hacker
culture at MIT, a precursor of what would
come in the 80s
• One of the founders of Multics project, which

would inspire Ken Thompson for UNIX, and
later Linux.
• Designed a lot of cool architectures. His

dataflow architectures are still inspiring new
chips (including Google’s TPU)

Hale | CS 450 6

IBM 7094 (~1960)

Hale | CS 450 7

IBM 7094 (~1960)

Hale | CS 450 8

1961: CTSS on the IBM 709

• MIT (again) develops the Compatible Time Sharing System, one of the
first time sharers
• The goal was debugging: batch processing sucks!
• https://archive.org/details/large-fast-computers/page/n5/mode/2up
• Interestingly, LISP was written on the 709 series

Hale | CS 450 9

https://archive.org/details/large-fast-computers/page/n5/mode/2up

Hale | CS 450 10

DEC PDP-1

1960

DEC later
eaten by
Compaq in
the
late 90s

First sold to
Bolt,
Beranek, and
Newman
(BBN) in
1960 ($1M
in todays
dollars)

Typewriter

• 1962: BBN develops early prototype time-sharing system
• “The purpose of the BBN time-sharing system is to increase the

effectiveness of the PDP-1 computer for those applications involving
manmachine interaction by allowing each of the five users, each at his
own typewriter to interact with the computer just as if he had a
computer all to' himself”
• White paper in 1963:

https://www.computer.org/csdl/pds/api/csdl/proceedings/download-
article/12OmNvpew7R/pdf

Hale | CS 450 11

Meanwhile in CT

Hale | CS 450 12

• John Kemeny and Thomas Kurtz want a
machine that can be used by all students, and
not just math/science students
• 1964: They get funding from NSF to build a

time-sharing system for the GE-225 (would
become DTSS)
• Teletypes allow hundreds of undergrads to

use the machine
• BASIC is born!

Early terminals: The Teletype

Hale | CS 450 13

TeleTYpe

Hale | CS 450 14

DEC VT100

Hale | CS 450 15

We’re going for more virtualization

• Virtualizing the CPU: give the illusion of private CPU (registers)
• Virtualize memory: give the illusion of private memory

Hale | CS 450 16

Anatomy of a uniprocess address space

Hale | CS 450 17

User process

OS (code + data)
Stack

Heap

code

data

0x0

0ffffffff

Physical mem

The physical address space is more complicated than this!
What’s wrong with this?

What we want from multiprogramming

• Protection
• Process can’t corrupt OS and other processes
• Can’t read their data either (privacy/security)

• Efficiency
• Don’t waste resources (primarily fragmentation)

• Sharing (of resources, of addr. space portions)
• Transparency
• Users not aware of sharing
• Works regardless of proc count

Hale | CS 450 18

Address Space Refresher

Hale | CS 450 19

What is an address space?

• Most often just a finite set of numbers which we can map (uniquely)
to objects in the real world
• Examples, memory address space (physical, virtual), IP address space,

MAC address space, postal box address space, etc.
• For our purposes, a set of 2^n n-bit addresses, each of which maps to

one memory location (a single byte on x86)

Hale | CS 450 20

Address Space Regions

• The address space itself is pretty uninteresting
• Certain regions of the address space (subsets) usually have meaning

attached to them by the OS

Hale | CS 450 21

The usual process address space

Hale | CS 450 22

Stack

Heap

code

data

The kernel

Important
regions

Address space regions have meaning

• What makes these regions within an address space interesting is what
meaning is attached to the bytes they map to

Hale | CS 450 23

The usual process address space

Hale | CS 450 24

Stack

Heap

code

data

The kernel

Important
regions

”The bytes at these
addresses will be
used for stack data”

Address spaces are malleable…

Hale | CS 450 25

Stack

code

data

The kernel

Important
regions

”The bytes at these
addresses will hold
my evil shellcode”😈

mmap(shellcode_fd, …);

Getting the VA map on Linux

Hale | CS 450 26

code

heap

stack

Kernel being clever

Dynamically
Linked
libraries

Dynamic linker’s
Code & data

Address spaces don’t necessarily map bytes
to RAM

Hale | CS 450 27

Extended Memory

BIOS ROM

Low Memory

16-bit devices,
expansion ROMS

32-bit memory-
mapped devices

PC 32-bit physical
address space
(differs from board
to board)

VGA Display

0x00000000

0x000a0000

0x000c0000

0x000f0000

0x00100000 (1MB)

Depends on System RAM

0xffffffff (4GB)

Only dark blue area gets routed to RAM chips by
the memory controller!

Important
regions

Getting the PA map on Linux

Hale | CS 450 28

A PCI Bridge

A memory-mapped PCI device

A fancy PCI device

To the DRAM DIMMs
BIOS

Where the bootloader put the kernel

How the physical address space works

Hale | CS 450 29

CPU Memory Controller
(e.g. Northbridge)

mov 0xbffdef7, %eax

0xbffdef7

System Bus (e.g. front-side bus)

PCI Bus

NIC (dev 1)

GPU (dev 0)

PCI Switch

System RAM (DRAM DIMMs)

0xbffdef7 DATA

THIS IS RAM ADDRESS!

How the physical address space works

Hale | CS 450 30

CPU Memory Controller
(e.g. Northbridge)

movb $’a’, 0xb0000

0xb0000

System Bus (e.g. front-side bus)

PCI Bus

NIC (dev 1)

GPU (dev 0)

PCI Switch

System RAM (DRAM DIMMs)

Dev: 0
Payload: ‘a’

PCI Packet

This is a memory mapped device! (PCI)

Our First Memory Virtualization Mechanisms

• Manual coordination
• Timesharing (mem dumping)
• Static relocation (compiler)
• Programmable Base
• Programmable Base + Bounds
• Segmentation

Hale | CS 450 31

Coordination

• Have users coordinate so that memory addresses they use don’t
collide
• If they do collide, it’s not the OS’s problem!
• We’ll need to know what processes will be running beforehand

Hale | CS 450 32

Coordination Example

Hale | CS 450 33

mov %eax, 0x1000
mov %ebx, 0x3000

mov %ecx, %edx
mov %edx, 0x2000
mov 0x3000, %ebx

program 1 program 2

there are collisions in the address space!

Coordination Example

Hale | CS 450 34

mov %eax, 0x1000
mov %ebx, 0x3000

mov %ecx, %edx
mov %edx, 0x12000
mov 0x13000, %ebx

program 1 program 2

manual relocation

Problems with coordination

• A lot of effort! Not transparent.
• Does not scale well when we add more and more users (programs) to

the system. Not a good way to share resources.
• Not portable
• Can’t add processes dynamically to the system (without rebooting)

Hale | CS 450 35

Our First Memory Virtualization Mechanisms

• Manual coordination
• Timesharing (mem dumping)
• Static relocation (compiler)
• Programmable Base
• Programmable Base + Bounds
• Segmentation

Hale | CS 450 36

Timesharing

• Just like we virtualize the CPU, let’s virtualize memory in time
• Give the illusion of many virtual memories by saving the memory of

one process to disk when we context switch

Hale | CS 450 37

Timesharing Example

Hale | CS 450 38

disk

memory

code
data

program binary

Timesharing Example

Hale | CS 450 39

disk

memory

code
data

program binary

process 1

code
data
stack
heap

Timesharing Example

Hale | CS 450 40

disk

memory

code
data

program binary

process 1
image

code
data
stack
heap

Timesharing Example

Hale | CS 450 41

disk

memory

code
data

program binary

process 1
image

code
data
stack
heap

process 2

code
data
stack
heap

Problems with timesharing

• Very bad performance
• Disk is slow
• We’re saving the entire process image. That mean’s all of the memory it uses

• We should go back to spacesharing (like in the coordination example),
where we split memory up physically
• But we need to make things cleaner (and more transparent)

Hale | CS 450 42

Our First Memory Virtualization Mechanisms

• Manual coordination
• Timesharing (mem dumping)
• Static relocation (compiler)
• Programmable Base
• Programmable Base + Bounds
• Segmentation

Hale | CS 450 43

Static relocation

• Spacesharing like coordination, but users aren’t involved
• OS rewrites each program before loading it into memory as a process

Hale | CS 450 44

Problems with static relocation

• Better than manual coordination because we get some transparency
• No protection/privacy
• Processes can overwrite each other’s memory
• And can read (no privacy)

• We can’t move the address space after it’s been created (unless we’re
willing to rewrite again)
• Scaling this is a pain when we add more procs

Hale | CS 450 45

Dynamic Relocation

• We need to transparently protect processes from each other
• We stop trusting the user/programmer
• Hardware support!
• Processor already has a memory management unit (MMU). We’ll just add

some more logic to it

• MMU changes addresses (behind process’s back) on every memory
reference
• Process loads/stores/jmps/etc use logical addresses.
• The MMU translates these (automatically) into physical addresses

Hale | CS 450 46

Hale | CS 450 47

CPU

Memory Controller

MMU

processing
core

logical address

translate()

physical address

OS programs this (user processes can’t touch)

What hardware support do we need?

• Two operating modes
• Privileged operation (protected mode, kernel mode): OS runs

• Only in this mode after: trap, system call, interrupt, exception
• Only some instructions in the ISA can be executed in this mode (e.g. those that deal with

the MMU)
• OS has access to all of physical memory

• User mode: user processes run in this mode. Can’t touch privileged
instructions!
• Addresses are translated from logical addresses to physical addresses

• We can implement these with a single bit in a control register

Hale | CS 450 48

Our First Memory Virtualization Mechanisms

• Manual coordination
• Timesharing (mem dumping)
• Static relocation (compiler)
• Programmable Base
• Programmable Base + Bounds
• Segmentation

Hale | CS 450 49

How do we implement it?

Hale | CS 450 50

MMU

PSW

BASE REGISTER

mode bit 1=user
0=kernel

2:1 MUX

OS Loads this (user can’t access)physical address

logical address

Programmable base register

• OS can write a new base register value (an offset) each time it loads a
new process
• Translate a logical address into a physical address by adding the offset

to the logical addr
• Each process has its own base register value (determined by the OS)

Hale | CS 450 51

Example

Hale | CS 450 52

P1

P2

base reg points here

0x00000000

0xffffffff

P1 is running

mov %eax, 0x1000

Example

Hale | CS 450 53

P1

P2

base reg points here

0x00000000

0xffffffff

P2 is running

mov %eax, 0x1000

Problems with programmable base?

• We can run off the end!

Hale | CS 450 54

Example

Hale | CS 450 55

P1

P2

base reg points here

0x00000000

0xffffffff

P2 is running

mov %eax, 0xf00000

Dynamic Relocation on the IBM machine

Hale | CS 450 56

Our First Memory Virtualization Mechanisms

• Manual coordination
• Timesharing (mem dumping)
• Static relocation (compiler)
• Programmable Base
• Programmable Base + Bounds
• Segmentation

Hale | CS 450 57

Base + Bounds

• Don’t allow memory references outside of the valid range
• Constrain the address space
• Add one more piece of hardware: the bounds register
• Holds the highest valid address of an address space (can also hold the size)
if (base_reg + logical_addr < bounds) {

phys_addr = base_reg + logical_addr;
} else {

raise_exception();
}

Hale | CS 450 58

How do we implement it?

Hale | CS 450 59

MMU

PSW

BASE REGISTER

mode bit 1=user
0=kernel

2:1 MUX

Add a check here!
physical address

logical address

BOUNDS REGISTER

>=?

Base + Bounds Advantages

• Provides protection (read and write) across address spaces
• Supports dynamic (transparent) relocation
• Simple and inexpensive to implement in hardware
• Fast (gives us good performance)

Hale | CS 450 60

Problems with Base + Bounds?

• Each process must be contiguously allocated in memory
• No sharing: Can’t share limited parts of the address space

Hale | CS 450 61

Our First Memory Virtualization Mechanisms

• Manual coordination
• Timesharing (mem dumping)
• Static relocation (compiler)
• Programmable Base
• Programmable Base + Bounds
• Segmentation

Hale | CS 450 62

Segmentation

• Divide the address space into logical segments
• Each segment corresponds to a logical region of the addr space (e.g.

code, data, stack, heap, etc.)
• Each segment can independently:
• Be placed separately in phys memory
• grow and shrink
• be protected (separate bits for read/write/execute permission)

Hale | CS 450 63

Segmented Addressing

• Process now specifies segment and offset within segment
• How?
• Use part of the logical address

• Top bits of the address select the segment (segment selector)
• Low bits specify offset within the segment

• What if our address space is too small?
• Don’t use special bits, instead use special registers (x86)

Hale | CS 450 64

Address Translation with Segmentation

Hale | CS 450 65

MMU

Segment Base Bounds R W

0 0x2000 0x6ff 1 0

1 0x0000 0x4ff 1 1

2 0x3000 0xfff 1 1

3 0x0000 0x0000 0 0

Segment Table

Problems with Segmentation

• Each segment must be allocated contiguously
• May not have sufficient physical memory for large segments

Hale | CS 450 66

Summary

• Next time we’ll look at a more elegant approach to virtual memory
(with HW support)
• Reminder: reading
• Reminder: Project 1a due Monday night!

Hale | CS 450 67

