
Virtual Memory: Paging
Questions Answered in this Lecture:
• How do we do better than dynamic relocation?
• What is paging?
• Where are page tables stored, how are they created?
• How are page tables managed?

Hale | CS 450 1

Announcements

• P1a due tonight
• P1b out tonight
• Keep up with your reading!

Hale | CS 450 2

Main Problem with Segmentation:
Fragmentation
• Free memory which cannot be allocated for useful things
• Why does it happen?
• Large allocations leave small pockets of free space
• Allocator prohibits use of this space

• Types?
• External: Visible to the allocator (i.e. the OS)
• Internal: Visible to the requester (e.g. if allocations must be a power of 2 size)

Hale | CS 450 3

Example

Hale | CS 450 4

Segment A

Segment B

Segment C

Internal
Fragmentation

Block allocated
to user

unused

internal
fragmentation

Aside on address translation

Hale | CS 450 5

𝑝 = 𝑓(𝑣)

physical address
translation function virtual address

Aside on address translation

Hale | CS 450 6

𝑝 = 𝑓(𝑣)

𝑓 𝑣 = 𝑣identity mapping

𝑓 𝑣 = 𝑣 + 𝑐offset mapping

𝑓 𝑣 = 𝑀[𝑣]arbitrary mapping

Address translation can be a function of time

Hale | CS 450 7

𝑝 = 𝑓(𝑣, 𝑡)

this gives us dynamic mappings!

Where we’re going

• We need a way to reduce fragmentation, and to allow arbitrary
mappings from virtual addresses to physical addresses
• We want to remove the contiguous address space restriction
• What we’ll end up with is more flexible than segmentation
• We’ll use a translation table, with one entry per translation
• Each process has its own translation table

Hale | CS 450 8

Translation (attempt 1)

• Every VA has a different translation
• Maintain a table somewhere to hold these translations

Hale | CS 450 9

Example

Hale | CS 450 10

0x00000000

0xffffffff

0x00000000

0xffffffff

Virtual addresses Physical addresses

Translation Table

f(0x0) = 0x0
f(0x1) = 0x6
f(0x2) = 0x1
f(0x3) = 0x3
f(0x4) = 0x4

What’s wrong with this?

• Way too much overhead! (4 bytes for every address on a 32-bit
machine)
• If we had a 4GB machine we’d need another 16GB (4bytes/address *

4G addresses) just for the translation table FOR EACH PROCESS!

Hale | CS 450 11

Translation (attempt 2)

• Let’s translate addresses in bigger chunks
• The bigger the chunk, the less space we need for our table (one entry

for every chunk)
• But the bigger we make the chunk, the greater the chance of external

fragmentation!

Hale | CS 450 12

TRADEOFF
ALERT

Indexing into the translation table

Hale | CS 450 13

Use the virtual address!

bit 0bit 31

table index offset into chunk

16 bits for table index
16 bits for offset

How big is a chunk? How many table entries?
How much space used by table?

Indexing into the translation table

Hale | CS 450 14

Use the virtual address!

bit 0bit 31

table index offset into chunk

1 bit for table index
31 bits for offset

How big is a chunk? How many table entries?
How much space used by table?

Indexing into the translation table

Hale | CS 450 15

Use the virtual address!

bit 0bit 31

table index offset into chunk

31 bit for table index
1 bits for offset

How big is a chunk? How many table entries?
How much space used by table?

Indexing into the translation table

Hale | CS 450 16

Use the virtual address!

bit 0bit 31

table index offset into chunk

20 bits for table index
12 bits for offset

How big is a chunk? How many table entries?
How much space used by table?

Translation using paging

• 4K is a standard chunk size
• We call each chunk a page
• Good tradeoff between table overhead and fragmentation
• How do we translate from VA to PA? (remember, virtual address is

the analogy to our logical address from before)

Hale | CS 450 17

Translation

Hale | CS 450 18

VA

bit 0bit 31

16 bits for table index
16 bits for offset

Virtual Page Number (VPN)
Also the index into our table

Page Table

offset within page
(page offset)

PA

bit 0bit 31

Physical Page Number (PPN) offset within page
(page offset)

page offset isn’t translated

Translation

Hale | CS 450 19

VA

bit 0bit 31

16 bits for table index
16 bits for offset

Virtual Page Number (VPN)
Also the index into our table

Page Table

offset within page
(page offset)

PA

bit 0bit 31

Physical Page Number (PPN) offset within page
(page offset)

VA = 0x00000b80

0x00020000

PA = 0x00020b80

Mapping

Hale | CS 450 20

Virtual
Address
Spaces

P1

P2

Physical
Address
Space

physical
page
frames

page table

Mapping

Hale | CS 450 21

Virtual
Address
Spaces

P1

P2

Physical
Address
Space

physical
page
frames

page table

Address spaces are not physically contiguous!

Mapping

Hale | CS 450 22

Virtual
Address
Spaces

P1

P2

Physical
Address
Space

physical
page
frames

page table

Translations can alias!
(mapping function is not always one-to-one)

Mapping

Hale | CS 450 23

Virtual
Address
Spaces

P1

P2

Physical
Address
Space

physical
page
frames

page table

Virtual Contiguity does not imply Physical Contiguity!

Where do we put the pagetables?

• We could create special logic on our chip…
• But too expensive!
• Put them in memory! (headscratcher right?)
• OS installs (and manages) page tables
• Install: create the mappings by writing the table somewhere in memory
• Manage: update, delete, handle errors (more on this later)

• Hardware does the translation (by doing lookups in the page tables)
• This lookup is called a page walk (we’ll see why in a later lecture)
• Raises errors (for OS to handle) when it can’t grok the page tables

Hale | CS 450 24

How does the hardware perform a page
walk?
• The page tables are in memory, but where?
• OS needs a way to tell the hardware where the PT is

Hale | CS 450 25

Page Table Base Register

• A register which points to the current page table
• It holds the physical address of the page table
• Only the OS can read/write it
• Goes by many names, e.g. PTBR, %cr3, etc

Hale | CS 450 26

page table (in RAM)

Page Table Base Reg.

CPU

What does this mean for memory access?

• Every memory reference must be translated
• Therefore every memory reference goes through the PT

Hale | CS 450 27

mov 0x80000, 8(%ebx)

How many memory references?

HINT: this is a trick question…

What happens on a context switch?

• Remember, each process has its own page table

Hale | CS 450 28

Hale | CS 450 29

page table for P1

page table for P0

RAM

PTBR

P0 is running

Hale | CS 450 30

page table for P1

page table for P0

RAM

PTBR

switch()

PTBR val for P0

Hale | CS 450 31

page table for P1

page table for P0

RAM

PTBR

switch()

PTBR val for P0

PTBR val for P1

Hale | CS 450 32

page table for P1

page table for P0

RAM

PTBR

P1 is running

PTBR val for P0

PTBR val for P1

Reusing some waste

• The page table entries only need to store the physical page number
(PPN, sometimes called physical frame number, PFN)
• The PTE does not have to store the page offset (it can come directly

from the VA)
• We can reuse the page offset bits for interesting stuff…

Hale | CS 450 33

PPN

present? | readable? | writable? | kernel only? | referenced?

PPN

Paging: Advantages

• We got rid of external fragmentation
• Any page can be placed in any frame in physical memory

• Fast to allocate and free
• Allocating a fixed-size page is very fast (e.g. bitmap-based allocator, plenty of

nice hardware instructions for this)
• Freeing a page is simple (no need to merge blocks)

• Simple to swap out portions of memory to the disk (more later)

Hale | CS 450 34

Paging: Disadvantages

• Internal fragmentation: page size might be too big for process’s
needs
• If we try to reduce page table overhead with large pages, this gets worse

• Additional memory references for every load and store
• Because page tables are in memory!
• Solution: caching (next time)

• Storage overhead for page tables is still pretty high
• We’re allocating a PTE for every page (even if it isn’t used)
• Solutions next time

Hale | CS 450 35

