
Virtual Memory: 
Anatomy of a memory reference
Questions Answered in this Lecture:

• How do we get illusion of the full address space?

• How do we swap out pages to disk efficiently?

• Which pages do we swap out?

• What is thrashing?

• What does an actual memory reference look like?

• How does the OS detect NULL pointer derefs?

Hale | CS 450 1



Announcements

• P1b due Friday! No extensions this time!

Hale | CS 450 2



Virtualizing Memory

• Remember, we’re giving the illusion of an address space
• This is a great abstraction because we provide that there are bytes 

named by addresses…
• But from where those bytes come is hidden to the user
• Recall:
• phys addr space: bytes can come from RAM, ROM, memory controller, PCI 

device, SCSI device, etc.

Hale | CS 450 3



Where do the bytes come from?

• Default case: a physical page of RAM
• What if we’re running low on RAM?

Hale | CS 450 4



Use Disk!

Hale | CS 450 5

page directory

page table

page table

disk

stashed 
physical page

“paged out”
“swapped”



What does this mean?

• We need some way to tie PTEs to disk (we’ll come back to this)
• Can’t just use a physical address!
• Need to integrate paging code with block (disk) driver

Hale | CS 450 6



Swapping

• Now if we’re running low on memory, we pick a victim process, and 
throw some of its pages out to disk
• We stash a pointer to the disk blocks, make a record of it
• Then invalidate the old PTE

Hale | CS 450 7



Hale | CS 450 8

page directory

page table

page table

physical page

physical page



Hale | CS 450 9

page directory

page table

page table

physical page

free physical page
disk

stashed 
physical page

“paged out”
“swapped”

this page can now be allocated for something else

e.g. kernel data, another process, etc.



What if we need the page?

• Process tries to access the old VA again. What happens?

Hale | CS 450 10



Hale | CS 450 11

page directory

page table

page table

physical page

free physical page
disk

stashed 
physical page

“paged out”
“swapped”



Hale | CS 450 12

page directory

page table

page table

physical page

physical page

This free physical page doesn’t have to be the same one as before!

What happens if we’re really low on memory? E.g. there is no
free physical page?



Thrashing

• When there are no free pages, we’re constantly swapping out to disk
• E.g., take a page from one process, give it to another, and so on
• Very bad place to be. Cache won’t help here.
• Buy more RAM!

Hale | CS 450 13



Page replacement (policy)

• Which page to replace? 
• FIFO (oldest mapped page is the target)
• LRU (least recently used. how to keep track?)
• Random

Hale | CS 450 14



Disk is slow

• Spinning disks especially are very slow!
• We want to minimize how much we go off to disk
• What do we do?

Hale | CS 450 15



The buffer cache

Hale | CS 450 16

disk

hot disk blocks

RAM

buffer cache



Hale | CS 450 17

swap_in (block_no) {
blk = block_lookup(block_no, buffer_cache)
if (blk == NULL) { // MISS

blk = disk_read(block_no);
}
page = page_alloc();
copy(page, blk);
return page;

}



Anatomy of a memory reference
Or, how does mapping work?

Hale | CS 450 18



Hale | CS 450 19



Hale | CS 450 20

This is our memory reference



Hale | CS 450 21

why?
how?



Hale | CS 450 22



Hale | CS 450 23



Hale | CS 450 24



Hale | CS 450 25



Hale | CS 450 26



Representing address space regions

Hale | CS 450 27

struct mem_region {
unsigned long start;
unsigned long len;
int type;
int present;
int paged_out;
…

}



Starting a process

• Kernel constructs memory regions for initial regions (stack, heap, 
kernel)
• All other portions of the address space are unmapped
• New regions must be created by request from userspace (mmap())

Hale | CS 450 28



What happens on a page fault?

• Lookup faulting address in the region map
• Some kind of search data structure: hash table, binary search tree, linked list, 

etc.

• Hit? Something special (like swapped page) is going on
• Miss? This is an address that isn’t mapped. SEGFAULT

Hale | CS 450 29



Hale | CS 450 30

char *map = mmap(0, textsize, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

how does this work?



Summary

• Disk allows us to better support illusion of full address space 
(swapping)
• Kernel backs address space regions with metadata (mechanism)
• Page faults drive the whole thing

Hale | CS 450 31


