
Virtual Memory: 
Anatomy of a memory reference
Questions Answered in this Lecture:

• How do we get illusion of the full address space?

• How do we swap out pages to disk efficiently?

• Which pages do we swap out?

• What is thrashing?

• What does an actual memory reference look like?

• How does the OS detect NULL pointer derefs?

Hale | CS 450 1



Announcements

• P1b due Friday! No extensions this time!
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Virtualizing Memory

• Remember, we’re giving the illusion of an address space
• This is a great abstraction because we provide that there are bytes 

named by addresses…
• But from where those bytes come is hidden to the user
• Recall:
• phys addr space: bytes can come from RAM, ROM, memory controller, PCI 

device, SCSI device, etc.
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Where do the bytes come from?

• Default case: a physical page of RAM
• What if we’re running low on RAM?
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Use Disk!
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What does this mean?

• We need some way to tie PTEs to disk (we’ll come back to this)
• Can’t just use a physical address!
• Need to integrate paging code with block (disk) driver
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Swapping

• Now if we’re running low on memory, we pick a victim process, and 
throw some of its pages out to disk
• We stash a pointer to the disk blocks, make a record of it
• Then invalidate the old PTE
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this page can now be allocated for something else

e.g. kernel data, another process, etc.



What if we need the page?

• Process tries to access the old VA again. What happens?
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This free physical page doesn’t have to be the same one as before!

What happens if we’re really low on memory? E.g. there is no
free physical page?



Thrashing

• When there are no free pages, we’re constantly swapping out to disk
• E.g., take a page from one process, give it to another, and so on
• Very bad place to be. Cache won’t help here.
• Buy more RAM!
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Page replacement (policy)

• Which page to replace? 
• FIFO (oldest mapped page is the target)
• LRU (least recently used. how to keep track?)
• Random
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Disk is slow

• Spinning disks especially are very slow!
• We want to minimize how much we go off to disk
• What do we do?
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The buffer cache
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swap_in (block_no) {
blk = block_lookup(block_no, buffer_cache)
if (blk == NULL) { // MISS

blk = disk_read(block_no);
}
page = page_alloc();
copy(page, blk);
return page;

}



Anatomy of a memory reference
Or, how does mapping work?
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This is our memory reference
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why?
how?
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Representing address space regions
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struct mem_region {
unsigned long start;
unsigned long len;
int type;
int present;
int paged_out;
…

}



Starting a process

• Kernel constructs memory regions for initial regions (stack, heap, 
kernel)
• All other portions of the address space are unmapped
• New regions must be created by request from userspace (mmap())
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What happens on a page fault?

• Lookup faulting address in the region map
• Some kind of search data structure: hash table, binary search tree, linked list, 

etc.

• Hit? Something special (like swapped page) is going on
• Miss? This is an address that isn’t mapped. SEGFAULT
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char *map = mmap(0, textsize, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

how does this work?



Summary

• Disk allows us to better support illusion of full address space 
(swapping)
• Kernel backs address space regions with metadata (mechanism)
• Page faults drive the whole thing
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