Concurrency:
Threads

Questions Answered in this Lecture:
 Why is concurrency useful?
 What is a thread and how does it differ from a process?

* What can go wrong if we don’t enforce mutual exclusion for critical
sections?

ILLINOIS INSTITUTE\.’-’;"
OF TECHNOLOGY

Announcements

* P1b due tomorrow! Don’t expect us to stay up until midnight on
Piazza ;)

* | have office hours today! Come get help!
* P1b grades looking good so far

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

What is concurrency?

* A more general form of parallelism

* The illusion of multiple execution contexts making progress
* Execution context = process/thread/etc.

* Does not require multiple CPU cores, processors, or machines
* But often involves them

e We’ve already seen concurrency with CPU virtualization!
(multiprogramming of processes)

ILLINOIS INSTITUTE‘[’. Hale | CS450
OF TECHNOLOGY

What is parallelism?

 Special case of concurrency
* Two execution contexts execute simultaneously

* Always requires more hardware (more cores, more processors, more
vector units, more machines, etc.)

ILLINOIS INSTITUTE‘(’. Hale | CS450
OF TECHNOLOGY

Why parallelism?

40 Years of Microprocessor Trend Data

7
10 n ! ' ' Transistors
N R R T A~ | (thousands)
10 : :
10° F __ _________ A :A___A _____ __________________________ 1 Single-Thread
.%.:." Performance 3
10* _ .. A{ ‘* P Aol S | (SpecINT x 10°)
At O L el il Frequency (MHz)
103 S OO A.E.A....AA..‘ 8 m. § | T -
= & gl Typical Power
102 _ A .. A.... 3 !- - v"'v"""’ Y"‘ - (Watts)
A Wy :"v Vo ey
1 é T ROA R A TV ele § Number of
10 = = S A S | Logical Cores
A g R v VY vv "‘.“"‘5
O L e o) P L 00 - 40 GHINED CH0000E €& n. - e, _
10 ‘ 2 0 L 2 00-0 “MMOQ 5
| | i |
1970 1980 1990 2000 2010 2020
Year

ILLINOIS INSTITUTEiU’.
OF TECHNOLOGY

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

Hale | CS450

The Switching Equation

Pd :(XCV@

Increasing clock frequency is great for performance,
but it increases power consumption (and thus heat generated)

We can’t do this forever! At some point clock frequency levels out

ILLINOIS INSTITUTE‘[’. Hale | CS450
OF TECHNOLOGY

Trends

e Can’t keep ramping up frequency due to power (and thus heat)
consumption
* But we can keep shrinking transistors
* What to do with all those extra transistors?
* More cores!

* Challenge: make good use of these cores

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Remember...

* One of the roles of the OS is to provide abstractions to the hardware
* Or a “hardware API” if you like
* What's the right one for multiple cores?

ILLINOIS INSTITUTEﬁW Hale | CS450
OF TECHNOLOGY

Why concurrency?

* Increase interactivity (doesn’t really help with performance)
* The illusion of true parallelism

* latency hiding (don’t wait for long-running operations)
* Overlapping activities (you probably do this every day)

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

How to make it happen?

* Option 1: Communicating processes
* Example: Chrome (process per tab)
* Example: Windowing system (process for server, one process per client)

* How do we coordinate processes?
 pipe() (buffer shared between producer proc and concumer proc)
* messages (message queues)

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Pros?

e Don’t need new abstractions
* Good for isolation/security

ILLINOIS INST[TUTE‘W
OF TECHNOLOGY

Cons?

* Hard to program!
* Communication overheads are high
* Context switching is expensive

ILLINOIS INSTITUTE\W
OF TECHNOLOGY

Option 2: Threads

* Like a process, less state attached
* Namely, threads share an address space (they share the page table(s))
* Divide your task into parts, one thread works on each part

 Communication is via shared memory

ILLINOIS INSTITUTE‘SU’. Hale | CS450 13
OF TECHNOLOGY

Concurrent programming models

* Producer/consumer: some threads/procs create work, others process
work

* Client/server: one thread/proc fields requests from multiple
consumers

* Pipeline: one thread/proc per task, each passes work to the next
thread/proc

 Daemon: work gets queued to a background thread
* A lot of others, take CS451 and/or CS546!

ILLINOIS INSTITUTE\,"'."
OF TECHNOLOGY

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

S I S E—

What state do threads share?

CPU 1 CPU 2 RAM

running running PageDir A

thread 1 thread 2 PageDir B

S I S E—

What threads share page directories?

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

PageDir A

lageDir B

CPU 1 CPU 2 RAM

thread 1 thread 2
PageDir B
e

running running

%

CPU 1 CPU 2 RAM

PageDir A
PTBR

|]
B el m—

running running
thread 1 thread 2

Do threads share Instruction Pointer?

CPU 1

Virt Mem
(PageDir A)

running
thread 1

CPU 2

running
thread 2

|

RAM

PageDir A

PageDir B

coDE HEAP |..

CPU 1 CPU 2 RAM

PageDir A

running running
thread 1 thread 2

|

(P\a/;g/i're/:; coDE HEAP |..

Share code, but each thread may be executing
different code at the same time

- Different Instruction Pointers

CPU 1 CPU 2 RAM

running running
thread 1 thread 2 B
ageDir B
PTBR PTBR '
IP

IE)__

Virt Mem
(PageDir A)

CPU 1

Virt Mem
(PageDir A)

running
thread 1

o

CPU 2

running
thread 2

(-

RAM

PageDir A

PageDir B

coDE HEAP |..

Do threads share stack pointer?

CPU 1 CPU 2 RAM

PageDir A

PageDir B

running running
thread 1 thread 2

‘
P iP_ |

Virt Mem kODE '—IEAP |

(PageDir A) VRO E | |

CPU 1 CPU 2 RAM

running running
thread 1 thread 2

|
P |

PageDir A

PageDir B

Virt Mem k)ODE '—IEAP |

(PageDir A) ISTACK : |

TACK 2 | |

threads executing different functions need different stacks

Thread vs. Process

* Multiple threads within a single process share:

e Address space
* Code (instructions)
* Most data (heap)

* Open file descriptors
e Current working directory
e User and group id

* Each thread has its own
 Thread ID (TID)
» Set of registers, including Program counter and Stack pointer

e Stack for local variables and return addresses
(in same address space)

ILLINOIS INSTITUTEW. Hale | CS450
OF TECHNOLOGY

26

Thread API

* Variety of thread systems exist
* POSIX Pthreads, Qthreads, Cilk, etc.

e Common thread operations
e create()
e exit()
 join(thethread) (instead of wait() for processes)

ILLINOIS INSTITUTE\.’-’;"
OF TECHNOLOGY

OS Support:
Approach 1

User-level threads: Many-to-one thread mapping

* Implemented by user-level runtime libraries
* Create, schedule, synchronize threads at user-level

e OSis not aware of user-level threads
e OS thinks each process contains only a single thread of control

Advantages
* Does not require OS support; Portable

* Can tune scheduling policy to meet application demands
* Lower overhead thread operations since no system call

Disadvantages?
* Cannot leverage multiprocessors
* Entire process blocks when one thread blocks

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

OS Support:
Approach 2

Kernel-level threads: One-to-one thread mapping
* OS provides each user-level thread with a kernel thread
e Each kernel thread scheduled independently

* Thread operations (creation, scheduling, synchronization)
performed by OS

Advantages

* Each kernel-level thread can run in parallel on a
multiprocessor

* When one thread blocks, other threads from process can
be scheduled

Disadvantages

* Higher overhead for thread operations
* OS must scale well with increasing number of threads

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

Thread Schedule

1

balance = balance + 1; balance at 0x9cd4

State:
Ox9cd4: 100

ILLINOIS INSTITUTE‘(’.
OF TECHNOLOGY

Thread 1 Thread 2
r
process %eax: ?
control %rip: 0x195
blocks:

mov 0x9cd4,

add $0x1,
mov , 0x9cd4
Hale | CS450 30

Thread Schedule

State:

Ox9cd4: 100
: 100

Srip = 0x19a

0x195
T1 * 0x19a
0x19d

ILLINOIS INSTITUTE‘{}.
OF TECHNOLOGY

Thread 1 Thread 2
r
Process %eax: ? %eax: ?
control Rorip: 0x195 %rip: 0x195
blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

Hale | CS450 31

Thread Schedule

State:

Ox9cd4: 100
: 101

Srip = 0x19d

0x195

ILLINOIS INSTITUTE‘{}.
OF TECHNOLOGY

Thread 1 Thread 2
r
Process %eax: ? %eax: ?
control Rorip: 0x195 %rip: 0x195
blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

Hale | CS450 32

Thread Schedule #1

Thread 1 Thread 2
State:

rocess
Ox9cd4: 101 P %eax: ? %eax: ?

- 101 control orip: ox195 %rip: 0x195
%rip = 0xl1a2 blocks:

0x195 mov 0x9cd4,

P0x19a add $0x1,

0x19d mov , 0x9cd4
rll'>

Thread Context Switch

ILLINOIS INSTITUTE‘E’. Hale | CS450
OF TECHNOLOGY

Thread Schedule #1

Stat Thread 1 Thread 2
ate.
Ox9cd4: 101 Process %eax: 101

%eax: ?
. 2 control |orip: ox1a2 %rip: Ox195
%rip = 0x195 blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

ILLINOIS INSTITUTE‘!"{.’. Hale | CS450
OF TECHNOLOGY

Thread Schedule #1

Stat Thread 1 Thread 2
ate.
Ox9cd4: 101 Process %eax: 101

%eax: ?
: 101 control |yrip: ox1a2 %rip: 0x195
%rip = 0x19a blocks:

0x195 mov 0x9cd4,
T2 W) 0x19a add $0x1,
0x19d mov , 0x9cd4

ILLINOIS INSTITUTE‘F Hale | CS450
OF TECHNOLOGY e

Thread Schedule #1

Stat Thread 1 Thread 2
ate.
Ox9cd4: 101 Process %eax: 101

%eax: ?
102 control |yrip: ox1a2 %rip: 0x195
%rip = 0x19d blocks:

0x195 mov 0x9cd4,
P0x19a add $0x1,
T2 * 0x19d mov , 0x9cd4

ILLINOIS INSTITUTE‘F Hale | CS450
OF TECHNOLOGY e

Thread Schedule #1

Stat Thread 1 Thread 2
ate.
Ox9cd4d: 102 Process %eax: 101

%eax: ?
102 control |yrip: ox1a2 %rip: 0x195
%rip = 0xla2 blocks:

0x195 mov 0x9cd4,

P0x19a add $0x1,

0x19d mov , 0x9cd4
KZI'}

ILLINOIS INSTITUTE‘F Hale | CS450
OF TECHNOLOGY e

Thread Schedule #1

Stat Thread 1 Thread 2
ate.
Ox9cd4: 102 Process %eax: 101

%eax: ?
102 control |yrip: ox1a2 %rip: 0x195
%rip = 0xla2 blocks:

0x195 mov 0x9cd4,

P0x19a add $0x1,

0x19d mov , 0x9cd4
tZl'}

Desired result!

ILLINOIS INSTITUTE‘E’. Hale | CS450
OF TECHNOLOGY

Another schedule

Thread Schedule

2

balance = balance + 1; balance at 0x9cd4

State:
Ox9cd4: 100

ILLINOIS INSTITUTE‘(’.
OF TECHNOLOGY

Thread 1 Thread 2
r
process %eax: ?
control %rip: 0x195
blocks:

mov 0x9cd4,

add $0x1,
mov , 0x9cd4
Hale | CS450 40

Thread Schedule

State:

Ox9cd4: 100
: 100

Srip = 0x19a

0x195
T1 * 0x19a
0x19d

ILLINOIS INSTITUTE‘{}.
OF TECHNOLOGY

Thread 1 Thread 2
r
Process %eax: ? %eax: ?
control Rorip: 0x195 %rip: 0x195
blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

Hale | CS450 41

Thread Schedule #2

Thread 1 Thread 2
State:

Ox9cd4: 100 Process %eax: ? %eax: ?
- 101 control orip: ox195 %rip: 0x195
%rip = 0x19d blocks:

0x195 mov 0x9cd4,
P0x19a add $0x1,
T1 * 0x19d mov 0x9cd4

Thread Context Switch

ILLINOIS INSTITUTE‘E’. Hale | CS450
OF TECHNOLOGY

Thread Schedule #2

Thread 1 Thread 2
State:

Ox9cd4: 100 Process %eax: 101 %eax: ?
. 2 control |orip: 0x19d %rip: 0x195
blocks:

mov 0x9cd4,

add $0x1,
mov , 0x9cd4
ILLINOIS INSTITUTEﬁf Hale | CS450

OF TECHNOLOGY

Thread Schedule #2

Stat Thread 1 Thread 2
ate.
Ox9cd4: 100 Process %eax: 101

%eax: ?
. 100 control |orip: ox19d %rip: 0x195
%rip = 0x19a blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

ILLINOIS INSTITUTE‘(’. Hale | CS450
OF TECHNOLOGY

Thread Schedule #2

Stat Thread 1 Thread 2
ate.
Ox9cd4: 100 Process %eax: 101

%eax: ?
. 101 control |orip: ox19d %rip: 0x195
%rip = 0x19d blocks:

0x195 mov 0x9cd4,
P0x19a add $0x1,
T2 * 0x19d mov 0x9cd4

ILLINOIS INSTITUTE‘{;: Hale | CS450
OF TECHNOLOGY e

Thread Schedule #2

Thread 1 Thread 2
State:

rocess
Ox9cd4: 101 P %eax: 101 %eax: ?

. 101 control |orip: ox19d %rip: 0x195
%rip = 0xl1a2 blocks:

0x195 mov 0x9cd4,
P0x19a add $0x1,
0x19d mov , 0x9cd4

Thread Context Switch

ILLINOIS INSTITUTE‘E’. Hale | CS450
OF TECHNOLOGY

Thread Schedule

State:

Ox9cd4: 101
: 101

%rip = 0x19d

0x195

ILLINOIS INSTITUTE‘(’.
OF TECHNOLOGY

Thread 1
"
PrOCESS R cax: 101
control Borip: 0x19d
blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

Hale | CS450

Thread 2

%eax: 101
%rip: Ox1a2

Thread Schedule

State:

Ox9cd4: 101
: 101

%rip = 0xla2

0x195
0x19a
0x19d

T1 l"'

ILLINOIS INSTITUTE‘(’.
OF TECHNOLOGY

Thread 1
.
Process %eax: 101
control Bosrip: 0x1a2
blocks:

mov 0x9cd4,
add $0x1,
mov , 0x9cd4

Hale | CS450

Thread 2

%eax: 101
%rip: Ox1a2

WRONG RESULT! Final balance value is 101

48

Timeline View: Interleaving #1

Thread 1 Thread 2
mov ©x123, %eax

add %0x1, %eax
mov %eax, 0x123

mov ©0x123, %eax
add 7%0x2 Z%eax
, mov %eax, ©0x123
time

How much is added to shared variable? 3: correct!

ILLINOIS INSTITUTE‘[’. Hale | CS450
OF TECHNOLOGY

49

Timeline View: Interleaving #2

Thread 1
mov ©x123, %eax

add %0x1, %eax

mov %eax, 0x123

time How much is added?

ILLINOIS INSTITUTE‘W

Hale | CS450
OF TECHNOLOGY

Thread 2

mov ©0x123, %eax

add %0x2, Z%eax
mov %eax, 0x123

2: incorrect!

50

Timeline View: Interleaving #3

Thread 1

mov 0x123, %eax

add %0x1, %eax

mov %eax, 0x123

time

How much is added?

ILLINOIS INSTITUTE‘W

Hale | CS450
OF TECHNOLOGY

Thread 2
mov 0x123, %eax

add %0x2, %eax

mov %eax, 0x123

1: incorrect!

51

Timeline View: Interleaving #4

Thread 1

mov ©x123, %eax
add %0x1, %eax
mov %eax, 0x123

time
How much is added?

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

Thread 2

mov ©x123, %eax
add %0x2, %eax
mov %eax, 0x123

52

Timeline View: Interleaving #5

Thread 1

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

vt'me How much is added?

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

Thread 2
mov 0x123, %eax
add %0x2, %eax

mov %eax, 0x123

2: incorrect!

53

Non-Determinism

* Concurrency leads to non-deterministic results
* Not deterministic result: different results even with same inputs
* race conditions

* Whether bug manifests depends on CPU schedule! (heisenbug)
* Passing tests means little

* How to program: assume scheduler is malicious

* Assume scheduler will pick bad ordering at some point...

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY

What do we want?

* Want 3 instructions to execute as an uninterruptable group

 That is, we want them to be an atomic unit

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

——critical section

More general:

Need mutual exclusion for critical sections

e if process Ais in critical section C, process B can’t be
(okay if other processes do unrelated work)

ILLINOIS INSTITUTEiU'. Hale | CS450
OF TECHNOLOGY

55

Synchronization

Build higher-level synchronization primitives in OS
 Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

ILLINOIS INSTITUTEﬁ&. Hale | CS450
OF TECHNOLOGY

56

Locks

Goal: Provide mutual exclusion (mutex)
Three common operations:

* Allocate and Initialize
o pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

* Acquire
* Acquire exclusion access to lock;
* Wait if lock is not available (some other process in critical section)
* Spin or block (relinquish CPU) while waiting
* pthread mutex lock(&mylock);

* Release

* Release exclusive access to lock; let another process enter critical section
* pthread mutex unlock(&mylock);

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY

57

Implementing Synchronization

* To implement, need atomic operations

* Atomic operation: guarantees no other instructions can be
interleaved

* Examples of atomic operations
* Code between interrupts on uniprocessors
* Disable timer interrupts, don’t do any I/O

e Loads and stores of words
* Loadrl, B
* Storerl, A
» Special hardware instructions
* agtomic test & set
* agtomic compare & swap

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

58

Implementing Locks: Attempt

Turn off interrupts for critical sections
Prevent dispatcher from running another thread
Code executes atomically

void acquire(lock t *1) {
disable_interrupts();

¥

void release(lock t *1) {

enable_interrupts();

¥

Disadvantages??

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

Implementing Locks: Attempt #2

Code uses a single shared lock variable

bool lock = false; // shared variable
void acquire() {

while (lock) /* wait */ ;
lock = true;

Why doesn’t this work?

void release() {
lock = false;

ILLINOIS INSTITUTE‘[’. Hale | CS450
OF TECHNOLOGY

60

Summary

* Concurrency is needed to obtain high performance by utilizing
multiple cores

* Threads are multiple execution streams within a single process or
address space (share PID and address space, own registers and stack)

* Context switches within a critical section can lead to non-
deterministic bugs (race conditions)

* Use locks to provide mutual exclusion

ILLINOIS INSTITUTE‘(’. Hale | CS450 61
OF TECHNOLOGY

