Concurrency:
Mutual Exclusion (Locks)

Questions Answered in this Lecture:

What are locks and how do we implement them?

How do we use hardware primitives (atomics) to support efficient locks?

How do we extend locks to multiprocessors?

How do we use locks to implement concurrent data structures?

t’}-’_.
ILLINOIS INSTITUT E\f Thanks to Remzi & Andrea Arapci-Dusseau for slide material
OF TECHNOLOGY



Announcements

* p2ais due Friday; pla grades should be posted tonight or tomorrow

* Midterm will be posted Wednesday 10/14 @ 2pm. It will be open
book, due 24 hours later

ILLINOIS INSTITUTE\."’E"
OF TECHNOLOGY



CPU 1 CPU 2 RAM

running running PageDir A

thread 1 thread 2 PageDir B

o

o S
%

(P\;g;g/i're/:") coDE HEAP |.. |

Review: which registers are shared between threads? Which are different?

ILLINOIS INSTITUTEiU'. Hale | CS450
OF TECHNOLOGY



CPU 1 CPU 2 RAM

running running

thread 1 thread 2

—
P {E |

Virt Mem k}ODE '—IEAP |

(PageDir A) VRO E | |

ILLINOIS INSTITUTEW. Hale | CS450
OF TECHNOLOGY



Review: What do we need for correctness?

* Want 3 instructions to execute as an uninterruptable group

 That is, we want them to be an atomic unit

mov ©x123, %eax
add %0x1, %eax |—.critical section
mov %eax, 0x123

More general:

Need mutual exclusion for critical sections

e if process A is in critical section C, process B can’t be
(okay if other processes do unrelated work)

ILLINOIS INSTITUTE‘[’. Hale | CS450
OF TECHNOLOGY




Other Examples

* Consider multi-threaded programs that do more than increment a
shared balance

* E.g., multi-threaded program with a shared linked-list

* All concurrent operations:
inserts element

* Thread B inserts element b
* Thread C looks up element c

ILLINOIS INSTITUTE\W
OF TECHNOLOGY



Shared Linked List

void list insert(list t *L, int key) {

node_t *new = malloc(sizeof(node_t)); typedef struct _ node_t {
assert(new); int key;
new->key = key; struct _ node_t *next;
new->next = L->head; } node_t;
L->head = new;
} typedef struct list t {
node_t *head;

int list lookup(list t *L, int key) {

node_t *tmp = L->head; polist t;
while (tmp) {
if (tmp-}key == key) void llSt_lnlt(llSt_t *L) {
return 1; L->head = NULL;
tmp = tmp->next; }
}
return O;
} What can go wrong?
What schedule leads to a problem?
ILLINOIS INSTITUTE V Hale | CS450

OF TECHNOLOGY



Linked-List Race

Thread 1 Thread 2

new->key = key

new->next = L->head

new->key = key
new->next = L->head
L->head = new
L->head = new
time
v Both entries point to old head

Only one entry (which one?) can be the new head.

ILLINOIS INSTITUTE‘[}.

Hale | CS450
OF TECHNOLOGY



Resulting Linked List

old

[orphan node]

ILLINOIS INSTITUTE@. Hale | CS450
OF TECHNOLOGY



Concurrent Linked List

void list insert(list t *L, int key) {
node_t *new = malloc(sizeof(node t));
assert(new);
new->key = key;
new->next = L->head;
L->head = new;

¥

int list lookup(list t *L, int key) {
node t *tmp = L->head;
while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;
}

return O;

STy

ILLINOIS INSTITUTE ¥ Hale | CS450

OF TECHNOLOGY

typedef struct _ node t {

int key;

struct _ node_t *next;
} node_t;

typedef struct list t {
node_t *head;
} list t;

void list init(list t *L) {
L->head = NULL;
}

How do we add locks to this?

10



Concurrent Linked List

void list insert(list t *L, int key) {

node t *new = malloc(sizeof(node t)); typedef struct _ node_t {
assert(new); int key;

new->key = key; struct _ node_t *next;
new->next = L->head; } node_t;

L->head = new;

} typedef struct list t {
int list lookup(list t *L, int key) { ptgre:dzﬁut§¥_t lock;
node_t *tmp = L->head; . node_ €ad;
while (tmp) { ;o list_t;
if (tmp->key == key)
return 1; void list init(list t *L) {
tmp = tmp->next; L->head = NULL;
} pthread mutex init(&L->lock, NULL);
return O; }
}
pthread_mutex_t lock;
ILLINOIS INSTITUTE W Hale | o one lock per list »

OF TECHNOLOGY



Locking Linked Lists : Approach #1

Void list insert(list t *L, int key) {
pthread_mutex_lock(&L->1ock);_} node_t *new =

malloc(sizeof(node t));
Consider everything critical section assert(new);

.. ) new->key = key;
Can critical section be smaller? y Y5
new->next = L->head;

L->head = new;
pthread_mutex_unlock(&L->1lock); ﬁ

inf list lookup(list t *L, int key) {
thread_mutex_lock(&L->lock); — ~
pthread_mutex_lock(&L->lock) —i node t *tmp = L->head;

while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;

pthread_mutex_unlock(&L->1lock); _}}

return 0;
}

ILLINOIS INSTITUTE‘{’ Hale | CS450
OF TECHNOLOGY

12



Locking Linked Lists : Approach #2

Void list _insert(list t *L, int key) {
node_t *new =
malloc(sizeof(node t));
assert(new);

thread_mutex_lock(&L->1lock) _}new—>key = key;
rea mutex 10C - ocC 5
p _ _ ) new->next = L->head;

L->head = new;
pthread_mutex_unlock(&L->lock); r}

int list lookup(list t *L, int key) {
pthread_mutex_lock(&L->lock); node t *tmp = L->head;

while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;

}
pthread_mutex_unlock(&L->1lock); _>r'et urn 0;
}

Critical section as small as possible

ILLINOIS INSTITUTE ¥V Hale | CS450
OF TECHNOLOGY

13



Locking Linked Lists : Approach #3

Void 1list_insert(list_t *L, int key) {
node_t *new =
What about lookup? malloc(sizeof(node_t));
assert(new);

pthread_mutex_lock(&L->lock); _}new—>key = key;
new->next = L->head;

L->head = new;
pthread_mutex_unlock(&L->lock); ﬁ

_ int list lookup(list t *L, int key) {
pthread_mutex_lock(&L->lock); _B node_t *tmp = L->head;

while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;

h
thread_mutex_unlock(&L->lock); _>
P - - ( )3 return 9;
t

If no 1ist_delete(), locks not necessary

ILLINOIS INSTITUTE‘[’. Hale | CS450
OF TECHNOLOGY

14



Synchronization

Build higher-level synchronization primitives in OS
 Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

ILLINOIS INSTITUTEﬁ&. Hale | CS450
OF TECHNOLOGY

15



Lock Implementation Goals

Correctness
* Mutual exclusion
* Only one thread in critical section at a time
* Progress (deadlock-free)
 If several simultaneous requests, must allow one to proceed
* Bounded (starvation-free)
* Must eventually allow each waiting thread to enter

Fairness
Each thread waits for same amount of time

Performance
CPU is not used unnecessarily (e.g., spinning)

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY

16



Implementing Synchronization

* To implement, need atomic operations
* Atomic operation: guarantees no other instructions can be interleaved

* Examples of atomic operations
* Code between interrupts on uniprocessors
* Disable timer interrupts, don’t do any I/O
* Loads and stores of words
* Loadrl, B
 Storerl, A
» Special hardware instructions

* atomic test & set
* atomic compare & swap

ILLINOIS INSTITUTE‘E’. Hale | CS450 17
OF TECHNOLOGY



Implementing Locks: Using Interrupts

Turn off interrupts for critical sections
* Prevent dispatcher from running another thread
* Code between interrupts executes atomically

void acquire(lock t *1) {

disableInterrupts();
}
void release(lock t *1) {
enableInterrupts();
}

Disadvantages??

* Only works on uniprocessors
* Process can keep control of CPU for arbitrary length
* Cannot perform other necessary work

ILLINOIS INSTITUTEW.

Hale | CS450
OF TECHNOLOGY



Implementing Locks: Using Load+Store

Code uses a single shared lock variable

bool lock = false;

void acquire(bool *lock) {
while (*lock);

*lock = true;

void release(bool *lock) {

*lock = false;

}

Why doesn’t this work? Example schedule that fails with 2
threads?

ILLINOIS INSTITUTE‘!"{.’. Hale | CS450
OF TECHNOLOGY

19



ILLINOIS INSTITUTEiU’.
OF TECHNOLOGY

*lock == 0 1initially

Thread 1 Thread 2

while (*lock == 1);
while (*lock == 1);
*lock = 1;

*lock = 1;

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

Hale | CS450

20



xchg: atomic exchange, or test-and-set

int xchg(int *addr, int newval) {
int old = xaddr;
*xaddr = newval;
return old;

+ S .
static inline unsigned

xchg(volatile unsigned int xaddr, unsigned int newval)
{
unsigned result;
asm volatile("lock; xchgl %0, %1" :
"+m'" (xaddr), "=a" (result)
"1" (newval) : "cc");
return result;

ILLINOIS INSTITUTE‘[’. Hale | CS450 21
OF TECHNOLOGY



XCHG Implementation

typedef struct _ lock t {
int flag;
} lock t;

void init(lock t *lock) {
lock->flag = ??;

}
int xchg(int xaddr, int newval)

void acquire(lock t *lock) {
???

}

void release(lock t *lock) {
lock->flag = ??;

}

ILLINOIS INSTITUTE ¥V Hale | CS450 22
OF TECHNOLOGY



XCHG Implementation

struct _ lock t {
int flag;
} lock t;

void init(lock t *lock) {
lock->flag = ©;
}

void acquire(lock t *lock) {
while (xchg(&lock->flag, 1) ==

}

void release(lock t *lock) {
lock->flag = ©;

}

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY

1);

23



Other Atomic HW Instructions

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *addr;

if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, ?, ?) == ?) ;
// spin-wait (do nothing)

ILLINOIS INSTITUTE‘!"{.’. Hale | CS450
OF TECHNOLOGY

24



Other Atomic HW Instructions

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, @0, 1) ==
// spin-wait (do nothing)

ILLINOIS INSTITUTE‘!"{.’. Hale | CS450
OF TECHNOLOGY

1) ;

25



Lock Implementation Goals

Correctness
e Mutual exclusion
* Only one thread in critical section at a time
* Progress (deadlock-free)
* If several simultaneous requests, must allow one to proceed
* Bounded (starvation-free)
* Must eventually allow each waiting thread to enter

Fairness
Each thread waits for same amount of time

Performance
CPU is not used unnecessarily

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

26



Basic Spinlocks are Unfair

unlock lock unlock lock unlock lock unlock

Scheduler is independent of locks/unlocks

ILLINOIS INSTITUTE@. Hale | CS450
OF TECHNOLOGY

lock

27



Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock
* Each thread spins until their turn.
* Use new atomic primitive, fetch-and-add:
int fetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;

return old;

}
Acquire: Grab ticket;
Spin while not thread’s ticket != turn

Release: Advance to next turn

ILLINOIS INSTITUTE‘SU’. Hale | CS450
OF TECHNOLOGY

28



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

29



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

30



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

31



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

32



Ticket Lock Example

A lock(): .
B lock(): Ticket Turn
C lock(): n
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock(): n
A runs
A unlock():
C lock():

ILLINOIS INSTITUTEﬁZ‘; Hale | CS450

OF TECHNOLOGY



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

34



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

35



Ticket Lock Example

A lock(): .
B lock(): Ticket Turn
C lock(): n
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock(): n
A runs
A unlock():
C lock():

ILLINOIS INSTITUTEﬁZ‘; Hale | CS450

OF TECHNOLOGY



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

37



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

38



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

39



Ticket Lock Example

A lock(): .

B lock(): Ticket Turn
C lock(): n
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock(): n
A runs

A unlock():
C lock():

ILLINOIS INSTITUTEW. Hale | CS450
OF TECHNOLOGY



Ticket Lock Example

ILLINOIS INSTITUTEW.
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

41



Ticket Lock Implementation

typedef struct __lock_t {
int ticket;

void acquire(lock t *lock) {

int turn; int myturn = FAA(&lock->ticket);
} while (lock->turn != myturn); // spin
void lock init(lock t *lock) }
{
lock->ticket = ©; void release (lock_t *lock) {
lock->turn = 0; FAA(&lock->turn);
}

ILLINOIS INSTITUTE ¥ Hale | CS450

42
OF TECHNOLOGY



Spinlock Performance

Fast when...

- many CPUs

- locks held a short time

- advantage: avoid context switch

Slow when...

- one CPU

- locks held a long time

- disadvantage: spinning is wasteful

ILLINOIS INSTITUTE‘W Hale | CS450
OF TECHNOLOGY

43



CPU Scheduler is Ignorant

lock unlock lock

CPU scheduler may run B instead of
even though B is waiting for

ILLINOIS INSTITUTE“[ Hale | CS450
OF TECHNOLOGY

44



Ticket Lock with yield()

typedef struct _ lock t { void acquire(lock_t *lock) {
int ticket; i .
' e int myturn = FAA(&lock->ticket);
int turn;
} while (lock->turn != myturn)
yield();
void lock_init(lock t *lock)
{ }
lock->ticket = 0;
lock->turn = @; void release (lock_t *lock) {
} FAA(&lock->turn);
}

ILLINOIS INSTITUTE‘!"{.’. Hale | CS450
OF TECHNOLOGY



Yield Instead of Spin

lock unlock lock

no yield:

lock unlock lock

yield:  JA\ I IA I
20 40

0 60 0 100 120 140 160

ILLINOIS INSTITUTE‘[’. Hale | CS450 46
OF TECHNOLOGY




Spinlock Performance

Waste...
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

So even with yield, spinning is slow with high thread
contention

Next improvement: Block and put thread on waiting
gueue instead of spinning

ILLINOIS INSTITUTE\V’.
OF TECHNOLOGY



