
OS Security
Questions Answered in this Lecture:

• Why does security matter for operating systems?

• What are some design concerns with security abstractions?

• What are instances where (poor) OS security has caused problems?

Hale | CS 450 1

Announcements

• P4b due Friday (phew!)

• P4a grades in the works, p3* should be up already

• Course evals!

Hale | CS 450 2

Why is OS security important?

Hale | CS 450 3

Apps, language runtimes, databases, libraries etc

OSEVIL

Security of OS affects everyone

• If your OS is compromised, you can’t trust anything

• That includes:
• Compilers

• Libraries

• Text Editors

• Any process!

• Oh by the way, the OS controls hardware ☺

Hale | CS 450 4

Why is it hard?

• Operating Systems are complex
• The bigger the codebase, bugs more likely

• More “entry points” (attack surface)

• Support *many* programs (multi-programming), and one being
insecure can’t break things!

• Security is a “cross-cutting” issue. It’s hard to separate out and
“assign” it to one developer

Hale | CS 450 5

Protection: What’s at stake?

• Access to any process’s memory

• Access to anything on persistent storage

• Kill processes, muck with scheduling

• Access the network in any way

• Control/manipulate devices

• Change available resources for processes

• Information returned from the kernel!

Hale | CS 450 6

Security Goals

• Confidentiality: information can be hidden from others

• Integrity: My stuff doesn’t change arbitrarily!

• Availability: If something should be available, don’t let others bring it
down

• Also: we want to share resources/state, but in a controlled way. E.g.
only my group member can access mapper.c

Hale | CS 450 7

Security goals can be achieved with policies:

• “Only users in my group may read this file”

• “By default, every process has distinct page tables”

• “Only the user with UID 0 may add device drivers to the kernel”

• Etc etc

Hale | CS 450 8

Design Principles

• Following some guidelines will help (but not guarantee) result in
secure systems

Hale | CS 450 9

Economy of mechanism

• “Keep it simple stupid! (KISS)”

• Simplicity reduces bugs, makes it easier to envision misuse, fewer
“entry points”

Hale | CS 450 10

How many ways to get in?

Fail-safe defaults

• Default to security!

• Default configurations, options, behaviors should be the most secure
by default, not the other way around

Hale | CS 450 11

Mediation

• If possible every action taken in the system should be mediated
(checked to see if it adheres to our security policies)

• This is often not possible because we have other design constraints
(performance) that we have to meet

Hale | CS 450 12

Open Design

• Assume attacker can pick apart your system

• Note this doesn’t mean you have to publicize your code/system
design
• But you should assume that attacker has managed to get it anyhow

• Corrolary: Security by obscurity does not work!

Hale | CS 450 13

Separate Privilege
• Critical actions require (>=) two sets of

credentials

• E.g. something you know with something
you have

• Something you know with something you
are

• Use a two-man rule…

Hale | CS 450 14

Principle of Least Privilege

• Only give privilege to users/entities/processes that is necessary. No
more.

• You may trust a particular user, but do you trust them not to be
compromised?

• Example: “ping” program needs privileged access to network card.
Should we allow elevated privileges when ping runs?

Hale | CS 450 15

Least Common Mechanism

• For each entity in the system, e.g. users or processes, use different
state or mechanisms to manipulate them

• Every process gets its own page table

• What about shared libraries?

Hale | CS 450 16

Acceptability

• Security cannot come at the cost of too much complexity

• If barrier to entry is too high, it won’t be used. Corollary: users are
lazy.

• Example…PGP

• How many people have Ubikeys?

• How many have burned a one-time pad to a CDROM?

Hale | CS 450 17

Safety not Guaranteed!

• Again, thinking this way will set you on the right path, but it will not
guarantee security.

• Think to yourself: “can we build provably secure systems?”

• That is a much harder problem

• OS “architecture” matters. Microkernels are an alternative…

Hale | CS 450 18

Authentication

Hale | CS 450 19

Authentication

• At some point we need to answer the question can person X perform
action A?

• But how do we identify a person or a principal in the OS context?

• It’s not, after all, the person that’s invoking system calls, or
dereferencing pointers to deadbeef virtual addresses!

• Some entity on the system (agent) is doing it on the person’s behalf

• Process = agent

Hale | CS 450 20

Identities

• Thus, we need some way to attach an identity to a process. We can
stash this somewhere (struct proc?) when the process is created.

• Ultimately, this means we have to pass more information to fork()

• But how do we know this person is this person?

Hale | CS 450 21

Authentication by…

• Something you know

• Something you have

• Something you are

Hale | CS 450 22

Password, PIN, shared secret, the Macarena

Keycard, USB key, credit card, key, barcode, signed letter

Fingerprint, Iris, facial structure, voice, thermal signature, skeletal
structure,

Passwords

• System asks for keyword

• User types it in

• Do they match? Access granted.

• Do we need to store passwords? What do we really care about?

Hale | CS 450 23

Login

Hale | CS 450 24

OS

/bin/init
UID = 0
(root)

exec()

user space (ring > 0)

kernel space
(ring 0)

/bin/login
UID = 0
(root)

fork()/exec()

while (1) {
printf(“login:”);
user = get_line(TIMEOUT, ECHO);
pass = get_line(TIMEOUT, NO_ECHO);
if (checkpass(pass)) {

fork(…, 1023)
…
exec(“/bin/sh”)

} else {
continue;

}

fork()/exec()

/bin/shell
UID = 1023

(Alice)

Access Control

• Now that we’ve authenticated someone on the system, how can we
determine whether or not they have access?

Hale | CS 450 25

ObjA ObjB Objc …

Principal 1 Rw- rwx Rw-

Principal 2 --- --- ---

Principal 3 R-x R-- R--

Does not scale!

Access Control

• Now that we’ve authenticated someone on the system, how can we
determine whether or not they have access?

Hale | CS 450 26

ObjA ObjB Objc …

Principal 1 Rw- rwx Rw-

Principal 2 --- --- ---

Principal 3 R-x R-- R--

Are you on the list?

Hale | CS 450 27

Gate
Access List

Alice
Bob
Charlie

Karen

Access Control Lists

• For each resource for which we need access control manage a list

• List contains allowed principals

• If requesting agent is not on the list…no beans

Hale | CS 450 28

In the System:

Hale | CS 450 29

foo.txt

Alice

open(“foo.txt”, O_RDWR)

Foo Access
List

Alice: rwx
Bob: r

In the System:

Hale | CS 450 30

foo.txt

Karen

open(“foo.txt”, O_RDWR)

Foo Access
List

Alice: rwx
Bob: r

But…

• Where do we store ACLs? (Think back…)

• How much space do we have for them? How are they structured?

• What if we don’t have enough space? How do we avoid overhead?

Hale | CS 450 31

Hale | CS 450 32

❯ ls -ltrh README.md
-rw-r--r-- 1 kyle kyle 176 Nov 24 16:38 README.md

what’s this?

Hale | CS 450 33

rwx

I can read it

Hale | CS 450 34

rwx

I can write it

Hale | CS 450 35

rwx

I can execute it

Hale | CS 450 36

rwx
this user

Hale | CS 450 37

rwx
this user

rwx
users in this
group

Hale | CS 450 38

rwx
this user

rwx
users in this
group

rwx
anyone else

Hale | CS 450 39

rwx
this user

rwx
users in this
group

rwx
anyone else

which user?

Hale | CS 450 40

rwx
this user

rwx
users in this
group

rwx
anyone else

which user?

which group?

Store UID,
GID of user who created
file in inode. Compare
against requester (who called open())

Hale | CS 450 41

rwx
this user

rwx
users in this
group

rwx
anyone else

This is a bit string…

111 111 111

Hale | CS 450 42

r-x
this user

r-x
users in this
group

r-x
anyone else

This is a bit string…

101 101 101

Hale | CS 450 43

r-x
this user

users in this
group

anyone else

This is a bit string…

111 000 000

Hale | CS 450 44

r-x
this user

users in this
group

anyone else

Is there a base 2^3 number system?

Yes! Octal (base 8)

Hale | CS 450 45

r-x
this user

users in this
group

anyone else

Can we use it to specify access control?
chmod 101 000 000 file.txt
chmod 5 0 0 file.txt
chmod 500 file.txt

Hale | CS 450 46

rw-
this user

r--
users in this
group

r--
anyone else

Can we use it to specify access control?
chmod 110 100 100 file.txt
chmod 6 4 4 file.txt
chmod 644 file.txt

ACLs

• Used in most commercial OSes (in some form or other)

• But…
• How do we enumerate all resources a user has access to?

• How do we make ACLs make sense across systems? (namespacing)

Hale | CS 450 47

Capabilities

Hale | CS 450 48

Object A

Object A: rw

capability

Questions

• How are capabilities created?

• Where are they stored? (consider files…how many?)

• Can they be copied? Why/why not?

Hale | CS 450 49

Capability Implementation

• Capabilities must not be forgeable

• Store them somewhere in the PCB (only kernel can access)

• Research Examples: Hydra, Cheri, Mungi

• Not common in real systems (e.g. KeyKOS, IBM System/38)

Hale | CS 450 50

Hybrids

• Consider how open() works on UNIX systems

• Is this only ACL?

Hale | CS 450 51

How to think about security?

• Adversarially…

• Assume the worst!

• If I were trying to break this, what would I do?

• You must really understand the code you write!

Hale | CS 450 52

How much do you trust?

Hale | CS 450 53

Want to Learn More?

• CS 458: Intro to Infosec

• CSP 544: System and Network Security

• CS 528: Data Privacy and Security

• CS 549: Cryptography

Hale | CS 450 54

