OS Security

Questions Answered in this Lecture:

 Why does security matter for operating systems?

 What are some design concerns with security abstractions?
 What are instances where (poor) OS security has caused problems?

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

Announcements

e P4b due Friday (phew!)
* P4a grades in the works, p3* should be up already
* Course evals!

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

Why is OS security important?

Apps, language runtimes, databases, libraries etc

ILLINOIS INSTITUTEV. Hale | CS 450
OF TECHNOLOGY

Security of OS affects everyone

* If your OS is compromised, you can’t trust anything

e That includes:
* Compilers
* Libraries
» Text Editors
* Any process!

* Oh by the way, the OS controls hardware ©

ILLINOIS INSTITUTE‘E"‘}' Hale | CS 450
OF TECHNOLOGY

Why is it hard?

* Operating Systems are complex
* The bigger the codebase, bugs more likely
* More “entry points” (attack surface)

e Support *many* programs (multi-programming), and one being
insecure can’t break things!

 Security is a “cross-cutting” issue. It’s hard to separate out and
“assign” it to one developer

ILLINOIS INSTITUTE‘E"‘}' Hale | CS 450
OF TECHNOLOGY

Protection: What’s at stake?

* Access to any process’s memory

* Access to anything on persistent storage
e Kill processes, muck with scheduling

e Access the network in any way

* Control/manipulate devices

* Change available resources for processes
* Information returned from the kernel!

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Security Goals

* Confidentiality: information can be hidden from others
* Integrity: My stuff doesn’t change arbitrarily!

 Availability: If something should be available, don’t let others bring it
down

* Also: we want to share resources/state, but in a controlled way. E.g.
only my group member can access mapper.c

ILLINOIS INSTITUTE‘E[;‘. Hal .
OF TECHNOLOGY ale | CS 450

Security goals can be achieved with policies:

* “Only users in my group may read this file”

» “By default, every process has distinct page tables”

e “Only the user with UID 0 may add device drivers to the kernel”
* Etc etc

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Design Principles

* Following some guidelines will help (but not guarantee) result in
secure systems

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

Economy of mechanism

e “Keep it simple stupid! (KISS)”

* Simplicity reduces bugs, makes it easier to envision misuse, fewer
“entry points”

How many ways to get in?

ILLINOIS INSTITUTE‘V Hale | CS 450
OF TECHNOLOGY

10

Fail-safe defaults

e Default to security!

* Default configurations, options, behaviors should be the most secure
by default, not the other way around

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Mediation

* If possible every action taken in the system should be mediated
(checked to see if it adheres to our security policies)

* This is often not possible because we have other design constraints
(performance) that we have to meet

ILLINOIS lNSTITUTE‘ Hale | CS 450
OF TECHNOLOGY

12

Open Design

e Assume attacker can pick apart your system

* Note this doesn’t mean you have to publicize your code/system
design
* But you should assume that attacker has managed to get it anyhow

* Corrolary: Security by obscurity does not work!

ILLINOIS lNSTITUTE‘{{;‘. Hale | CS 450
OF TECHNOLOGY e

13

Separate Privilege

* Critical actions require (>=) two sets of
credentials

* E.g. something you know with something
you have

* Something you know with something you
are

e Use atwo-manrule...

ILLINOIS INSTITUTE@' Hale | CS 450 14
OF TECHNOLOGY

Principle of Least Privilege

* Only give privilege to users/entities/processes that is necessary. No
more.

* You may trust a particular user, but do you trust them not to be
compromised?

* Example: “ping” program needs privileged access to network card.
Should we allow elevated privileges when ping runs?

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Least Common Mechanism

* For each entity in the system, e.g. users or processes, use different
state or mechanisms to manipulate them

* Every process gets its own page table
* What about shared libraries?

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Acceptability

* Security cannot come at the cost of too much complexity

* If barrier to entry is too high, it won’t be used. Corollary: users are
lazy.

* Example...PGP
* How many people have Ubikeys?
* How many have burned a one-time pad to a CDROM?

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Safety not Guaranteed!

selL4: Formal Verification of an OS Kernel

Gerwin Klein'?, Kevin Elphinstone!?, Gernot Heiser!??

June Andronick?, David Cock!, Philip Derrin'*, Dhammika Elkaduwe!?! Kai Engelhardt'?
Rafal Kolanski’?, Michael Norrish!*, Thomas Sewell!, Harvey Tuch'?!, Simon Winwood'

I NICTA, ? UNSW, ® Open Kernel Labs, * ANU

ertos@nicta.com.au

Abstract

Complete formal verification is the only known way
to guarantee that a system is free of programming
€rrors.

We present our experience in performing the for-
mal, machine-checked verification of the seL4 mi-
crokernel from an abstract specification down to its
C implementation. We assume correctness of com-
piler, assembly code, and hardware, and we used a

proach is to reduce the amount of privileged code,
in order to minimise the exposure to bugs. This is
a primary motivation behind security kernels and
separation kernels [38, 54|, the MILS approach [4],
microkernels [1,12,35,45,57,71] and isolation ker-
nels [69], the use of small hypervisors as a minimal
trust base [16,26,56,59], as well as systems that re-
quire the use of type-safe languages for all code except
some “dirty” core [7,23]. Similarly, the Common Cri-

18

Authentication

ILLINOIS INSTITUTEﬁ‘I"
OF TECHNOLOGY

Hale | CS 450

19

Authentication

* At some point we need to answer the question can person X perform
action A?

e But how do we identify a person or a principal in the OS context?

* It’s not, after all, the person that’s invoking system calls, or
dereferencing pointers to deadbeef virtual addresses!

e Some entity on the system (agent) is doing it on the person’s behalf
* Process = agent

ILLINOIS INSTITUTE\?}.
OF TECHNOLOGY

ldentities

* Thus, we need some way to attach an identity to a process. We can
stash this somewhere (struct proc?) when the process is created.

* Ultimately, this means we have to pass more information to fork()
* But how do we know this person is this person?

ILLINOIS INSTITUTE\?’: Hale | CS 450
OF TECHNOLOGY

21

Authentication by...

* Somet
* Somet
* Somet

ILLINOIS INSTITUTE ¥
OF TECHNOLOGY

ning you know

ning you have

ning you are

Password, PIN, shared secret, the Macarena

Keycard, USB key, credit card, key, barcode, signed letter

Fingerprint, Iris, facial structure, voice, thermal signature, skeletal
structure,

Hale | CS 450 22

Passwords

e System asks for keyword

* User types it in

* Do they match? Access granted.

* Do we need to store passwords? What do we really care about?

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

LOgI ﬂ user space (ring > 0)

. . /bin/shell
/bin/login while (1) { UID = 1023

UiD=0 printf(“login:”); .

(root) user = get_line(TIMEOUT, ECHO); (Alice)

pass = get 1ine(TIMEOUT, NO_ECHO);
if (checkpass(pass)) {

/bin/init

Uib=0 fork()/exec(fork(.., 1023)
(root) “xec(“/bin/sh”) fork()/exec()
} else {
continue;
}

kernel space
(ring 0)

ILLINOIS INSTITUTEV. Hale | CS 450

24
OF TECHNOLOGY

Does not scale!

ILLINOIS INSTITUTE“.’. Hale | CS 450
OF TECHNOLOGY

Access Control

* Now that we’ve authenticated someone on the system, how can we
determine whether or not they have access?

Principal 1 Rw- rwx Rw-
Principal 2 - —- —
Principal 3 R-x R-- R--

ILLINOIS INSTITUTE@' Hale | CS 450 26
OF TECHNOLOGY

ILLINOIS INSTITUTE

Are you on the list?

Gate
Access List

e N7 EBRT: 2 o
® -4(a2 & oy~ T wAﬂ .-Jo- . Yol .
1«--J
e PO :
- .-'. ;’

\«qa.._‘

Alice
Bob

Karen

i
y Hale | CS 450
OF TECHNOLOGY

Access Control Lists

* For each resource for which we need access control manage a list
* List contains allowed principals
* If requesting agent is not on the list...no beans

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

In the System: @

Alice

\ open(“foo.txt”, O _RDWR)

Foo Access
List

DN

foo.txt

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

In the System: @

Karen

\ open(“foo.txt”, O _RDWR)

Foo Access

DN

foo.txt

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

But...

 Where do we store ACLs? (Think back...)
* How much space do we have for them? How are they structured?
* What if we don’t have enough space? How do we avoid overhead?

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

> 1s -1trh README.md
l-rw-r--r-- L kyle kyle 176 Nov 24 16:38 README.md

what’s this?

ILLINOIS lNSTITUTE‘{." Hale | CS 450 32
OF TECHNOLOGY

| can read it

WX

ILLINOIS INSTITUTE ¥ Hale | CS 450
OF TECHNOLOGY

| can write it

WX

ILLINOIS INSTITUTE ¥ Hale | CS 450
OF TECHNOLOGY

ILLINOIS INSTITUTE‘Q‘.’:
OF TECHNOLOGY

| can execute it

WX

Hale | CS 450

35

ILLINOIS INSTITUTE 4
OF TECHNOLOGY

WX

this user

Hale | CS 450

36

MW X PW X

this user users in this
group

ILLINOIS INSTITUTE\?”
OF TECHNOLOGY

PWX I''wX WX

this user users in this anyone else
group

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

which user?

\ PWX I'wX WX

this user users in this anyone else
group

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

Store UID,
GID of user who created
file in inode. Compare

Wthh grou p? against requester (who called open())
which user?

PWX I''wX WX

this user users in this anyone else
group

ILLINOIS INSTITUTE‘E‘[’. Hale | CS 450 40
OF TECHNOLOGY

This is a bit string...

111 111 111
PWX IFwWX WX

this user users in this anyone else
group

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

This is a bit string...

101 101 101
r-X nr-=X N-X

this user users in this anyone else
group

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

This is a bit string...

111 000 000
r-x =--- ---

this user users in this anyone else
group

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

ILLINOIS INSTITUTE‘E‘[.’:
OF TECHNOLOGY

Is there a base 223 number system?

Yes! Octal (base 8)

r-x =--- ---

this user users in this anyone else
group

Hale | CS 450

44

ILLINOIS INSTITUTEﬁi’.
OF TECHNOLOGY

Can we use it to specify access control?

chmod 101 000 000 file.txt
chmod 5 9 O file.txt

chmod 500 file.txt
r-x --- ---

this user users in this anyone else
group

Hale | CS 450

45

ILLINOIS INSTITUTEﬁ"‘"
OF TECHNOLOGY

Can we use it to specify access control?

chmod 110 100 100 file.txt
chmod 6 4 4 file.txt

chmod 644 file.txt
rw- r-- pr--

this user users in this anyone else
group

Hale | CS 450

46

ACLs

e Used in most commercial OSes (in some form or other)

* But...

* How do we enumerate all resources a user has access to?
 How do we make ACLs make sense across systems? (namespacing)

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

Capabilities

capability

@ @ﬁ Object A

Object A: rw

ILLINOIS INSTITUTE‘W Hale | CS 450
OF TECHNOLOGY

Questions

* How are capabilities created?
* Where are they stored? (consider files...how many?)
* Can they be copied? Why/why not?

ILLINOIS INSTITUTE\{L.
OF TECHNOLOGY

Capability Implementation

e Capabilities must not be forgeable

 Store them somewhere in the PCB (only kernel can access)
e Research Examples: Hydra, Cheri, Mungi

* Not common in real systems (e.g. KeyKOS, IBM System/38)

ILLINOIS INSTITUTE\?’: Hale | CS 450
OF TECHNOLOGY

50

Hybrids

* Consider how open() works on UNIX systems
* |s this only ACL?

ILLINOIS INSTITUTE\?”
OF TECHNOLOGY

How to think about security?

* Adversarially...

* Assume the worst!

* If | were trying to break this, what would | do?
* You must really understand the code you write!

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

How much do you trust?

ILLINOIS INSTITUTE ¥
OF TECHNOLOGY

TURING AWARD LECTURE

Reflections on Trusting Trust

To what extent should one trust a statement that a program is free of Trojan
horses? Perhaps it is more important to trust the people who wrote the

software.

KEN THOMPSON

INTRODUCTION

I thank the ACM for this award. I can't help but feel
that I am receiving this honor for timing and serendip-
ity as much as technical merit. UNIX" swept into popu-

larity with an industry-wide change from central main-

frames to autonomous minis. I suspect that Daniel Bob-
row (1] would be here instead of me if he could not
afford a PDP-10 and had had to “settle” for a PDP-11.
Moreover, the current state of UNIX is the result of the
labors of a large number of people.

L NG MR B Sl TORAGY | TGRSR T\ Y | ROy SO

programs. I would like to present to you the cutest
program I ever wrote. I will do this in three stages and
try to bring it together at the end.

STAGE 1

In college, before video games, we would amuse our-
selves by posing programming exercises. One of the
favorites was to write the shortest self-reproducing pro-
gram. Since this is an exercise divorced from reality,
the usual vehicle was FORTRAN. Actually, FORTRAN

53

Want to Learn More?

e CS 458: Intro to Infosec

e CSP 544: System and Network Security
e CS 528: Data Privacy and Security

* CS 549: Cryptography

ILLINOIS INSTITUTE\‘{»'T
OF TECHNOLOGY

