
File System
Implementation

Questions answered in this lecture:
What on-disk structures to represent files and directories?

Contiguous, Extents, Linked, FAT, Indexed, Multi-level indexed
Which are good for different metrics?

What disk operations are needed for:
make directory
open file
write/read file
close file

Slides: Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Review: File Names

Different types of names work better in different contexts

inode

- unique name for file system to use

- records meta-data about file: file size, permissions, etc

path

- easy for people to remember

- organizes files in hierarchical manner; encode locality information

file descriptor

- avoid frequent traversal of paths

- remember multiple offsets for next read or write

Review: File API

int fd = open(char *path, int flag, mode_t mode)

read(int fd, void *buf, size_t nbyte)

write(int fd, void *buf, size_t nbyte)

close(int fd)

Today: Implementation

1. On-disk structures

- how does file system represent files, directories?

2. Access methods

- what steps must reads/writes take?

Part 1:
Disk Structures

Persistent Store

Given: large array of blocks on disk

Want: some structure to map files to disk blocks

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Similarity to
Memory?

Same principle:
map logical abstraction to physical resource

Process 1

Process 2

Logical View: Address Spaces

P
hy

si
ca

l V
ie

w

Process 3

Allocation
Strategies

Many different approaches
• Contiguous
• Extent-based
• Linked
• File-allocation Tables
• Indexed
• Multi-level Indexed

Questions
• Amount of fragmentation (internal and external)

– freespace that can’t be used
• Ability to grow file over time?
• Performance of sequential accesses (contiguous layout)?
• Speed to find data blocks for random accesses?
• Wasted space for meta-data overhead (everything that isn’t data)?

• Meta-data must be stored persistently too!

Contiguous
Allocation

Allocate each file to contiguous sectors on disk
• Meta-data:
• OS allocates by finding sufficient free space

• Must predict future size of file; Should space be reserved?
• Example: IBM OS/360

A A A B B B B C C C

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? + Little overhead for meta-data

+ Excellent performance

+ Simple calculation

- Horrible external frag (needs periodic compaction)

- May not be able to without moving

Starting block and size of file

Small # of ExtentS
Allocate multiple contiguous regions (extents) per file

• Meta-data:

D A A A B B B B C C C B BD D

A A A B B B B C C C

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? + Still small overhead for meta-data

+ Still good performance

+ Still simple calculation

- Helps external fragmentation

- Can grow (until run out of extents)

Small array (2-6) designating each extent
Each entry: starting block and size

Linked Allocation
Allocate linked-list of fixed-sized blocks (multiple sectors)

• Meta-data:

• Examples: TOPS-10, Alto

D A A A B B B B C C C B BD D D DB

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? - Waste pointer per block

+/- Depends on data layout

- Ridiculously poor

+ No external frag (use any block); internal?

+ Can grow easily

Trade-off: Block size (does not need to equal sector size)

Location of first block of file
Each block also contains pointer to next block

File-Allocation Table
(FAT)

Variation of Linked allocation
• Keep linked-list information for all files in on-disk FAT table
• Meta-data: Location of first block of file

• And, FAT table itself

Draw corresponding FAT Table?
Comparison to Linked Allocation

• Same basic advantages and disadvantages
• Disadvantage: Read from two disk locations for every data read
• Optimization: Cache FAT in main memory

– Advantage: Greatly improves random accesses
– What portions should be cached? Scale with larger file systems?

D A A A B B B B C C C B BD D D DB

Indexed Allocation
Allocate fixed-sized blocks for each file

• Meta-data:
• Allocate space for ptrs at file creation time

Advantages
• No external fragmentation
• Files can be easily grown up to max file size
• Supports random access

Disadvantages
• Large overhead for meta-data:

– Wastes space for unneeded pointers (most files are small!)

D A A A B B B B C C C B BD D D DB

Fixed-sized array of block pointers

Multi-Level Indexing
Variation of Indexed Allocation

• Dynamically allocate hierarchy of pointers to blocks as needed
• Meta-data: Small number of pointers allocated statically

• Additional pointers to blocks of pointers
• Examples: UNIX FFS-based file systems, ext2, ext3

Comparison to Indexed Allocation
• Advantage: Does not waste space for unneeded pointers

– Still fast access for small files
– Can grow to what size??

• Disadvantage: Need to read indirect blocks of pointers to calculate
addresses (extra disk read)

– Keep indirect blocks cached in main memory

indirect

double
indirect

indirect
triple

indirect

Flexible # of ExtentS
Modern file systems:

Dynamic multiple contiguous regions (extents) per file
• Organize extents into multi-level tree structure

• Each leaf node: starting block and contiguous size
• Minimizes meta-data overhead when have few extents
• Allows growth beyond fixed number of extents

Fragmentation (internal and external)?

Ability to grow file over time?

Seek cost for sequential accesses?

Speed to calculate random accesses?

Wasted space for meta-data? + Relatively small overhead

+ Still good performance

+/- Some calculations depending on
size

+ Both reasonable

+ Can grow

Assume Multi-Level
Indexing

Simple approach

More complex file systems build from these basic data
structures

On-Disk Structures

- data block

- inode table

- indirect block

- directories

- data bitmap

- inode bitmap

- superblock

FS Structs: Empty Disk

D D D D D D D D
0 7

D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

Assume each block is 4KB

Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D D D D D D

Not actual layout : Examine better layout in next lecture
Purpose: Relative number of each time of block

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

inode
16

inode
17

inode
18

inode
19

inode
20

inode
21

inode
22

inode
23

inode
24

inode
25

inode
26

inode
27

inode
28

inode
29

inode
30

inode
31

One Inode Block

Each inode is typically 256
bytes (depends on the FS,
maybe 128 bytes)

4KB disk block

16 inodes per inode block.

Inode

type (file or dir?)
uid (owner)

rwx (permissions)
size (in bytes)

Blocks
time (access)
ctime (create)

links_count (# paths)
addrs[N] (N data blocks)

Inodes

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

type
uid
rwx
size
blocks
time
ctime

links_count
addrs[N]

Inode

Assume single level (just pointers
to data blocks)

What is max file size?
Assume 256-byte inodes (all can
be used for pointers)
Assume 4-byte addrs

How to get larger files?

256 / 4 = 64
64 * 4K = 256 KB!

inode

data data data data

inode

indirect indirect indirect indirect

Indirect blocks are stored in
regular data blocks.

what if we want to
optimize for small files?

inode

indirectdata data data

Better for small files

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 0?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 4?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Assume 256 byte inodes (16 inodes/block).
What is offset for inode with number 40?

Directories

File systems vary

Common design:
Store directory entries in data blocks

Large directories just use multiple data blocks

Use bit in inode to distinguish directories from files

Various formats could be used

- lists

- b-trees

Simple Directory List
Example

valid name inode

1
1
1

.
..
foo

134
35
80

1 bar 23

unlink(“foo”)

Allocation

How do we find free data blocks or free inodes?

Free list

Bitmaps

Tradeoffs in next lecture…

Bitmaps?

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D D D I I I I I

Opportunity for
Inconsistency (fsck)

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

D i d I I I I I

Superblock

Need to know basic FS configuration metadata, like:

- block size

- # of inodes

Store this in superblock

Super Block

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

D D D D D D D D
32 39

D D D D D D D D
40 47

D D D D D D D D
48 55

D D D D D D D D
56 63

S i d I I I I I

On-Disk Structures

Super Block

Data Block

Inode Table

Data Bitmap

Inode Bitmap

directories indirects

Part 2 : Operations

- create file

- write

- open

- read

- close

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

write

write

What needs to be read and written?

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read

read
read

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

read
read

write
write

write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

read

read
write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

Efficiency

How can we avoid this excessive I/O for basic ops?

Cache for:

- reads

- write buffering

Write Buffering

Why does procrastination help?

Overwrites, deletes, scheduling

Shared structs (e.g., bitmaps+dirs) often overwritten.

We decide: how much to buffer, how long to buffer…

- tradeoffs?

Summary/Future

We’ve described a very simple FS.

- basic on-disk structures

- the basic ops

Future questions:

- how to allocate efficiently to obtain good performance
from disk?

- how to handle crashes?

