Slides: Andrea C. Arpaci-Dusseau Remzi H. Arpaci-Dusseau

PERSISTENCE: FAST FILE SYSTEM (FFS)

Questions answered in this lecture:

How to improve performance of complex system?

Why do file systems obtain worse performance over time?

How to choose the right block size? How to avoid internal fragmentation?

How to place related blocks close to one another on disk?

FILE-SYSTEM CASE STUDIES

Local

- FFS: Fast File System
- LFS: Log-Structured File System

Network

- NFS: Network File System
- AFS: Andrew File System

REVIEW: BASIC LAYOUT

What is stored as a data block?

REVIEW: create /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data

[traverse]

create /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read	read		read	read

Verify that bar does not already exist

[allocate inode]

create /foo/bar

inode	root	foo	bar	root	foo
bitmap	inode	inode	inode	data	data
read write	read	read		read	

create /foo/bar

[populate inode]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read	read		read	
	read write					read
				read write		

Why must **read** bar inode? How to initialize inode?

[add bar to /foo]

create /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data
		read			read	
			read		read	read
	read					Teau
	write			read		
				write		
			write			
						write

Update inode (e.g., size) and data for directory

open /foo/bar

data inod bitmap bitm		foo inode	bar inode	root data	foo data	bar data
	read			read		
		read			read	
			read			

write to /foo/bar (assume file exists and has been opened)

ata map	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
ad rite				read			
				write			write

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data

append to /foo/bar (opened already)

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
				read			

[allocate block]

data	inode	root	foo	bar	root	foo	bar
bitmap	bitmap	inode	inode	inode	data	data	data
read write				read			

[point to block]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
read write				read			
				write			

[write to block]

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
read write				read			
				write			write

read /foo/bar – assume opened

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data
				read			
							read
				write			

close /foo/bar

data bitmap	inode bitmap	root inode	foo inode	bar inode	root data	foo data	bar data

nothing to do on disk!

REVIEW: LOCALITY TYPES

Which type of locality is most interesting with a disk?

ORDER MATTERS

Implication for disk schedulers?

POLICY: CHOOSE INODE, DATA BLOCKS

Assuming all free, which should be chosen?

BAD FILE LAYOUT

BETTER FILE LAYOUT

inode

0 1 2 3

S i d I I I I I D D D D D D

0 7 8 15

D D D D D D D D D D

16 23 24 31

BEST FILE LAYOUT

inode

Can't do this for all files 🕾

FAST FILE SYSTEM: FFS (1980'S)

SYSTEM BUILDING

Beginner's approach

- 1. get idea
- 2. build it!

Pro approach

measure then build

- 1. identify existing state of the art
- 2. measure it, identify and understand problems
- 3. get idea (solutions often flow from deeply understanding problem)
- 4. build it!

MEASURE OLD FS

State of the art: original UNIX file system

Free lists are embedded in inodes, data blocks
Data blocks are 512 bytes

Measure throughput for whole sequential file reads/writes

Compare to theoretical max, which is... disk bandwidth

Old UNIX file system: achieved only 2% of potential. Why?

MEASUREMENT 1: AGING?

What is performance before/after aging?

- New FS: 17.5% of disk bandwidth
- Few weeks old: 3% of disk bandwidth

Problem: FS becomes fragmented over time

• Free list makes contiguous chunks hard to find

Hacky Solutions:

- Occassional defrag of disk
- Keep freelist sorted

MEASUREMENT 2: BLOCK SIZE?

How does <u>block size</u> affect performance? Try doubling it!

Result: Performance more than doubled

Why double the performance?

- · Logically adjacent blocks not physically adjacent
- Only half as many seeks+rotations now required

Why more than double the performance?

• Smaller blocks require more indirect blocks

OLD FS SUMMARY

Free list becomes scrambled > random allocations

Small blocks (512 bytes)

Blocks laid out poorly

- long distance between inodes/data
- related inodes not close to one another
 - Which inodes related? Inodes in same directory (ls –l)

Result: 2% of potential performance! (and worse over time)

Problem: old FS treats disk like RAM!

SOLUTION: DISK-AWARENESS

Primary File System Design Questions:

• Where to place meta-data and data on disk?

How to use big blocks without wasting space?

PLACEMENT TECHNIQUE 1: BITMAPS

super block

bitmaps

inodes

Data Blocks

()

N

Use bitmaps instead of free list Provides better speed, with more global view

Faster to find contiguous free blocks

PLACEMENT TECHNIQUE 2: GROUPS

before: whole disk

before: whole disk

before: whole disk

before: whole disk

TECHNIQUE 2: GROUPS

How to keep inode close to data?

Answer: Use groups across disks; Try to place inode and data in same

TECHNIQUE 2: GROUPS

strategy: allocate inodes and data blocks in same group.

GROUPS

In FFS, groups were ranges of cylinders

- called cylinder group

In ext2-4, groups are ranges of blocks

- called block group

PLACEMENT TECHNIQUE 3: SUPER ROTATION

Is it useful to have multiple super blocks?

Yes, if some (but not all) fail.

Old FS: All super-block copies are on the top platter. Correlated failures! What if top platter dies?

solution: for each group, store super-block at different offset

TECHNIQUE: LARGER BLOCKS

Observation: Doubling block size for old FS over doubled performance Why not make blocks huge?

Most file are very small, even today!

LARGER BLOCKS

Lots of waste due to internal fragment in most blocks

Time vs. Space tradeoffs...

SOLUTION: FRAGMENTS

Hybrid – combine best of large blocks and best of small blocks

Use large block when file is large enough

Introduce "fragment" for files that use parts of blocks

Only tail of file uses fragments

FRAGMENT EXAMPLE

Block size = 4096

Fragment size = 1024

bits: 0000 0000 1111 0010

blk1 blk2 blk3 blk4

Whether addr refers to block or fragment is inferred by file offset

What about when files grow?

Must copy fragments to new block if no room to grow

append A to first file

append A to first file Not allowed to use fragments across multiple blocks!

What to do instead?

append A to first file, copy to fragments to new block

OPTIMAL WRITE SIZE

Writing less than a block is inefficient

Solution: new API exposes optimal write size

SMART POLICY

Where should new inodes and data blocks go?

STRATEGY

Put related pieces of data near each other.

Rules:

- 1. Put directory entries near directory inodes.
- 2. Put inodes near directory entries.
- 3. Put data blocks near inodes.

Sound good?

Problem: File system is one big tree

All directories and files have a common root.

All data in same FS is related in some way

Trying to put everything near everything else doesn't make any choices!

REVISED STRATEGY

Put more-related pieces of data near each other

Put less-related pieces of data far from each other

FFS developers used their best judgement

FFS puts dir inodes in a new group

"1s" is fast on directories with many files.

PREFERENCES

File inodes: allocate in same group with dir

Dir inodes: allocate in <u>new</u> group with fewer used inodes than average group

First data block: allocate near inode

Other data blocks: allocate near previous block

PROBLEM: LARGE FILES

Single large file can fill nearly all of a group

Displaces data for many small files

Better to do one seek for large file than one seek for each of many small files

Define "large" as requiring an indirect block

Starting at indirect (e.g., after 48 KB) put blocks in a new block group.

PREFERENCES

File inodes: allocate in same group with dir

Dir inodes: allocate in <u>new</u> group with <u>fewer used inodes than average</u> group

First data block: allocate near inode

Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group. Move to another group (w/ fewer than avg blocks) every subsequent 1MB.

GROUP DESCRIPTOR (AKA SUMMARY BLOCK)

How does file system know which new group to pick?

Tracks number of free inodes and data blocks

CONCLUSION

First disk-aware file system

- Bitmaps
- Locality groups
- Rotated superblocks
- Large blocks
- Fragments
- Smart allocation policy

FFS inspired modern files systems, including ext2 and ext3

FFS also introduced several new features:

- long file names
- atomic rename
- symbolic links

ADVICE

All hardware is unique

Treat disk like disk!

Treat flash like flash!

Treat random-access memory like random-access memory!