
Persistence:
FAST FILE SYSTEM (FFS)

Questions answered in this lecture:

How to improve performance of complex system?

Why do file systems obtain worse performance over time?

How to choose the right block size? How to avoid internal fragmentation?

How to place related blocks close to one another on disk?

Slides: Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

File-System
Case Studies

Local

- FFS: Fast File System

- LFS: Log-Structured File System

Network

- NFS: Network File System

- AFS: Andrew File System

Data Blockssuper
block inodes

0 N

bit
maps

inodes
data blocks

regular data
directories

indirect blocks

Review: Basic Layout

What is stored as a data block?

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

REVIEW: create /foo/bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

[traverse]

Verify that bar does not already exist

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

[allocate inode]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

read
write

[populate inode]

Why must read bar inode?
How to initialize inode?

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

create /foo/bar

read
read

read
read

read
write

write

read
write

write

[add bar to /foo]

Update inode (e.g., size) and data for directory

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

open /foo/bar

data
bar

read

read
read

read
read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

write to /foo/bar (assume file exists and has been opened)

bar
data

read
read

write
write

write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

data
bar

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar (opened already)

bar
data

read

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read

write

[allocate block]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read

write

write

[point to block]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

append to /foo/bar

bar
data

read
read

write

write

write

[write to block]

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

read /foo/bar – assume opened

data
bar

read

read
write

data inode root foo bar root foo
bitmap bitmap inode inode inode data data

close /foo/bar

data
bar

nothing to do on disk!

Review: Locality Types

time

ad
dr

es
s

…
Spatial Locality

time

ad
dr

es
s

…
Temporal Locality

Which type of locality is most interesting with a disk?

Order Matters

time

ad
dr

es
s

…
Fast

time

ad
dr

es
s

…
Slow

Implication for disk schedulers?

Policy: Choose Inode,
Data Blocks

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I

Assuming all free, which should be chosen?

Bad File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0

123

inode

Better File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0 1 2 3

inode

Best File Layout

0 7
D D D D D D D D
8 15

D D D D D D D D
16 23

D D D D D D D D
24 31

S i d I I I I I
0 1 2 3

inode

Can’t do this for all files L

Fast File System:
FFS

(1980’s)

System Building

Beginner’s approach

1. get idea

2. build it!

Pro approach

1. identify existing state of the art

2. measure it, identify and understand problems

3. get idea (solutions often flow from deeply understanding problem)

4. build it!

measure then build

Measure Old FS

State of the art: original UNIX file system

Data Blockssuper
block inodes

0 N
Free lists are embedded in inodes, data blocks

Data blocks are 512 bytes

Measure throughput for whole sequential file reads/writes

Compare to theoretical max, which is…

Old UNIX file system: achieved only 2% of potential. Why?

disk bandwidth

Measurement 1: Aging?

What is performance before/after aging?
• New FS: 17.5% of disk bandwidth

• Few weeks old: 3% of disk bandwidth

Problem: FS becomes fragmented over time
• Free list makes contiguous chunks hard to find

Hacky Solutions:
• Occassional defrag of disk

• Keep freelist sorted

How does block size affect performance?
Try doubling it!

Result: Performance more than doubled

Why double the performance?
• Logically adjacent blocks not physically adjacent
• Only half as many seeks+rotations now required

Why more than double the performance?
• Smaller blocks require more indirect blocks

Measurement 2:
Block SIZE?

Old FS Summary

Free list becomes scrambled à random allocations

Small blocks (512 bytes)

Blocks laid out poorly
• long distance between inodes/data

• related inodes not close to one another
• Which inodes related?

Result: 2% of potential performance! (and worse over time)

Problem: old FS treats disk like RAM!

Inodes in same directory (ls –l)

Solution: disk-
awareness

Primary File System Design Questions:

• Where to place meta-data and data on disk?

• How to use big blocks without wasting space?

Data Blockssuper
block inodes

0 N

Placement Technique 1:
Bitmaps

Use bitmaps instead of free list
Provides better speed, with more global view

Faster to find contiguous free blocks

bitmaps

Data Blockssuper
block inodes

0 N

Placement Technique 2:
Groups

bitmaps

before: whole disk

fast

How to keep inode close to data?

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slow

How to keep inode close to data?

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slower

How to keep inode close to data?

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

slowest

How to keep inode close to data?

Data Blockssuper
block inodes

0 N

Technique 2: Groups

bitmaps

before: whole disk

How to keep inode close to data?

Technique 2: Groups

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

How to keep inode close to data?

Answer: Use groups across disks;
Try to place inode and data in same

group

Technique 2: Groups

DS IB

strategy: allocate inodes and data blocks in same group.

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

fast fast fast

Groups

In FFS, groups were ranges of cylinders

- called cylinder group

In ext2-4, groups are ranges of blocks

- called block group

Placement Technique 3:
Super Rotation

DS IB

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Is it useful to have multiple super blocks?

Yes, if some (but not all) fail.

Problem

Old FS: All super-block copies are on the top platter.
Correlated failures! What if top platter dies?

solution: for each group, store super-block at different offset

Technique:
LargeR Blocks

Most file are very
small, even today!

Observation: Doubling block size for old FS over doubled performance
Why not make blocks huge?

LargeR Blocks

Lots of waste due to internal fragment in most blocks

Time vs. Space tradeoffs…

0

12.5

25

37.5

50

512 1024 2048 4096

P
er

ce
nt

Block Size

Solution: Fragments

Hybrid – combine best of large blocks and best of small
blocks

Use large block when file is large enough

Introduce “fragment” for files that use parts of blocks
• Only tail of file uses fragments

Fragment Example
Block size = 4096

Fragment size = 1024

bits: 0000 0000 1111 0010
blk1 blk2 blk3 blk4

Whether addr refers to block or fragment is inferred by file offset

What about when files grow?

Must copy fragments to new block if no room to grow

AAAA

file, size 5KB file, size 2KB

B A B

AAAA

file, size 6KB file, size 2KB

B A B A

append A to first file

AAAA

file, size 6KB file, size 2KB

B A B A

AAAA

file, size 7KB file, size 2KB

B A B A

append A to first file
Not allowed to use fragments across multiple blocks!

What to do instead?

A

AAAA AAAA

file, size 8KB file, size 2KB

B B

append A to first file,
copy to fragments to new block

Optimal Write Size

Writing less than a block is inefficient

Solution: new API exposes optimal write size

Smart Policy

DS IB

Where should new inodes and data blocks go?

group 10 G

DS IB

2G

DS IB

3Ggroup 2 group 3

…

Strategy

Put related pieces of data near each other.

Rules:
1. Put directory entries near directory inodes.
2. Put inodes near directory entries.
3. Put data blocks near inodes.

Sound good?

Problem: File system is one big tree
All directories and files have a common root.
All data in same FS is related in some way

Trying to put everything near everything else doesn’t make any
choices!

Revised Strategy

Put more-related pieces of data near each other

Put less-related pieces of data far from each other

FFS developers used their best judgement

inode dir data

file inode

dir inode

B1

B2

B3

B1

B2

Where to cut the tree and start
growing into another group?

pointer

related

many

FFS puts dir inodes in a new group

break

“ls” is fast on directories with many files.

Preferences

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than
average group

First data block: allocate near inode

Other data blocks: allocate near previous block

Problem: Large Files

Single large file can fill nearly all of a group

Displaces data for many small files

Better to do one seek for large file than one seek for each of
many small files

inode dir data

file inode

dir inode

B1

B2

B3

B1

B2

Large files: where to cut the tree and start
growing into another group?

pointer

related

many break

Ind B3

B4

Define “large” as requiring an indirect block

br
ea
k

Starting at indirect (e.g., after 48 KB)
put blocks in a new block group.

Preferences

File inodes: allocate in same group with dir

Dir inodes: allocate in new group with fewer used inodes than average
group

First data block: allocate near inode

Other data blocks: allocate near previous block

Large file data blocks: after 48KB, go to new group. Move to another
group (w/ fewer than avg blocks) every subsequent 1MB.

Data Blockssuper
block inodes

0 G

Group Descriptor
(aka Summary Block)

bitmapssum-
mary

Tracks number of free inodes and data blocks

How does file system know which new group to pick?

Conclusion

First disk-aware file system
• Bitmaps
• Locality groups
• Rotated superblocks
• Large blocks
• Fragments
• Smart allocation policy

FFS inspired modern files systems, including ext2 and ext3

FFS also introduced several new features:
• long file names
• atomic rename
• symbolic links

Advice

All hardware is unique

Treat disk like disk!

Treat flash like flash!

Treat random-access memory like random-access memory!

