
Concurrency:
Threads

Questions Answered in this Lecture:
• Why is concurrency useful?
• What is a thread and how does it differ from a process?
• What can go wrong if we don’t enforce mutual exclusion for critical

sections?

1Hale | CS450

Announcements

• P2a due tomorrow! Don’t expect us to stay up until midnight on
Piazza ;)
• I have office hours today! Come get help!
• P1b grades looking good. A handful of you managed to not turn in

your info.txt

2Hale | CS450

What is concurrency?

• A more general form of parallelism
• The illusion of multiple execution contexts making progress
• Execution context = process/thread/etc.
• Does not require multiple CPU cores, processors, or machines
• But often involves them
• We’ve already seen concurrency with CPU virtualization!

(multiprogramming of processes)

3Hale | CS450

What is parallelism?

• Special case of concurrency
• Two execution contexts execute simultaneously
• Always requires more hardware (more cores, more processors, more

vector units, more machines, etc.)

4Hale | CS450

Why parallelism?

5Hale | CS450

The Switching Equation

6

!" = α%&'(

Hale | CS450

Increasing clock frequency is great for performance,
but it increases power consumption (and thus heat generated)

We can’t do this forever! At some point clock frequency levels out

Trends

• Can’t keep ramping up frequency due to power (and thus heat)
consumption
• But we can keep shrinking transistors
• What to do with all those extra transistors?
• More cores!

• Challenge: make good use of these cores

7Hale | CS450

Remember…

• One of the roles of the OS is to provide abstractions to the hardware
• Or a “hardware API” if you like
• What’s the right one for multiple cores?

8Hale | CS450

Why concurrency?

• Increase interactivity (doesn’t really help with performance)
• The illusion of true parallelism

• latency hiding (don’t wait for long-running operations)
• Overlapping activities (you probably do this every day)

9Hale | CS450

How to make it happen?

• Option 1: Communicating processes
• Example: Chrome (process per tab)
• Example: Windowing system (process for server, one process per client)

• How do we coordinate processes?
• pipe() (buffer shared between producer proc and concumer proc)
• messages (message queues)

10Hale | CS450

Pros?

• Don’t need new abstractions
• Good for isolation/security

11Hale | CS450

Cons?

• Hard to program!
• Communication overheads are high
• Context switching is expensive

12Hale | CS450

Option 2: Threads

• Like a process, less state attached
• Namely, threads share an address space (they share the page table(s))
• Divide your task into parts, one thread works on each part
• Communication is via shared memory

13Hale | CS450

Concurrent programming models

• Producer/consumer: some threads/procs create work, others process
work
• Client/server: one thread/proc fields requests from multiple

consumers
• Pipeline: one thread/proc per task, each passes work to the next

thread/proc
• Daemon: work gets queued to a background thread
• A lot of others, take CS451 and/or CS546!

14Hale | CS450

CPU 1 CPU 2
running
thread 1

running
thread 2

RAM

What state do threads share?

running
thread 1

running
thread 2

PageDir A

PageDir B
…

What threads share page directories?

CPU 1 CPU 2 RAM

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

CPU 1 CPU 2 RAM

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

CPU 1 CPU 2 RAM

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

IP IP

Do threads share Instruction Pointer?

CPU 1 CPU 2 RAM

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

CODE HEAP …Virt Mem
(PageDir A)

IP IP

CPU 1 CPU 2 RAM

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

IP IP

Share code, but each thread may be executing
different code at the same time

à Different Instruction Pointers

CPU 1 CPU 2 RAM

CODE HEAP …Virt Mem
(PageDir A)

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

IP IP

CPU 1 CPU 2 RAM

CODE HEAP …Virt Mem
(PageDir A)

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

IP IPSP SP

Do threads share stack pointer?

CPU 1 CPU 2 RAM

CODE HEAP …Virt Mem
(PageDir A)

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

CODE HEAPVirt Mem
(PageDir A)

IP IPSP SP

STACK 1 STACK 2

CPU 1 CPU 2 RAM

running
thread 1

running
thread 2

PageDir A

PageDir B
…PTBRPTBR

IP IPSP SP

threads executing different functions need different stacks

CPU 1 CPU 2 RAM

CODE HEAPVirt Mem
(PageDir A) STACK 1 STACK 2

Thread vs. Process

• Multiple threads within a single process share:
• Process ID (PID)
• Address space

• Code (instructions)
• Most data (heap)

• Open file descriptors
• Current working directory
• User and group id

• Each thread has its own
• Thread ID (TID)
• Set of registers, including Program counter and Stack pointer
• Stack for local variables and return addresses

(in same address space)

Hale | CS450 26

Thread API

• Variety of thread systems exist
• POSIX Pthreads, Qthreads, Cilk, etc.

• Common thread operations
• create()
• exit()
• join(thethread) (instead of wait() for processes)

Hale | CS450 27

OS Support:
Approach 1

User-level threads: Many-to-one thread mapping
• Implemented by user-level runtime libraries

• Create, schedule, synchronize threads at user-level
• OS is not aware of user-level threads

• OS thinks each process contains only a single thread of control

Advantages
• Does not require OS support; Portable
• Can tune scheduling policy to meet application demands
• Lower overhead thread operations since no system call

Disadvantages?
• Cannot leverage multiprocessors
• Entire process blocks when one thread blocks

28Hale | CS450

OS Support:
Approach 2

Kernel-level threads: One-to-one thread mapping
• OS provides each user-level thread with a kernel thread
• Each kernel thread scheduled independently
• Thread operations (creation, scheduling, synchronization)

performed by OS
Advantages
• Each kernel-level thread can run in parallel on a

multiprocessor
• When one thread blocks, other threads from process can

be scheduled
Disadvantages
• Higher overhead for thread operations
• OS must scale well with increasing number of threads

29Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T1

%eax: ?
%rip: 0x195

balance = balance + 1; balance at 0x9cd4

30Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process
control
blocks:

T1

%eax: ?
%rip: 0x195

31Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process
control
blocks:

T1

%eax: ?
%rip: 0x195

32Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T1

%eax: ?
%rip: 0x195

33Hale | CS450

Thread Context Switch

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: ?
%rip = 0x195

process
control
blocks:

T2

%eax: ?
%rip: 0x195

34Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x19a

process
control
blocks:

T2

%eax: ?
%rip: 0x195

35Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 102
%rip = 0x19d

process
control
blocks:

T2

%eax: ?
%rip: 0x195

36Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

process
control
blocks:

T2

%eax: ?
%rip: 0x195

37Hale | CS450

Thread Schedule #1

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 102
%eax: 102
%rip = 0x1a2

process
control
blocks:

T2

%eax: ?
%rip: 0x195

38Hale | CS450

Desired result!

Another schedule

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T1

%eax: ?
%rip: 0x195

balance = balance + 1; balance at 0x9cd4

40Hale | CS450

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process
control
blocks:

T1

%eax: ?
%rip: 0x195

41Hale | CS450

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: ?
%rip: 0x195

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process
control
blocks:

T1

%eax: ?
%rip: 0x195

42Hale | CS450

Thread Context Switch

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: ?
%rip = 0x195

process
control
blocks:

T2

%eax: ?
%rip: 0x195

43Hale | CS450

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: 100
%rip = 0x19a

process
control
blocks:

T2

%eax: ?
%rip: 0x195

44Hale | CS450

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 100
%eax: 101
%rip = 0x19d

process
control
blocks:

T2

%eax: ?
%rip: 0x195

45Hale | CS450

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T2

%eax: ?
%rip: 0x195

46Hale | CS450

Thread Context Switch

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x19d

State:
0x9cd4: 101
%eax: 101
%rip = 0x19d

process
control
blocks:

T1

%eax: 101
%rip: 0x1a2

47Hale | CS450

Thread Schedule #2

0x195 mov 0x9cd4, %eax
0x19a add $0x1, %eax
0x19d mov %eax, 0x9cd4A

Thread 1 Thread 2

%eax: 101
%rip: 0x1a2

State:
0x9cd4: 101
%eax: 101
%rip = 0x1a2

process
control
blocks:

T1

%eax: 101
%rip: 0x1a2

48Hale | CS450

WRONG RESULT! Final balance value is 101

Timeline View: Interleaving #1
Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123

How much is added to shared variable? 3: correct!
49Hale | CS450

time

Timeline View: Interleaving #2

Thread 1 Thread 2
mov 0x123, %eax
add %0x1, %eax

mov 0x123, %eax
mov %eax, 0x123

add %0x2, %eax
mov %eax, 0x123

How much is added?
2: incorrect!

50Hale | CS450

time

Timeline View: Interleaving #3
Thread 1 Thread 2

mov 0x123, %eax
mov 0x123, %eax

add %0x2, %eax
add %0x1, %eax

mov %eax, 0x123
mov %eax, 0x123

How much is added?

1: incorrect!
51Hale | CS450

time

Timeline View: Interleaving #4
Thread 1 Thread 2

mov 0x123, %eax
add %0x2, %eax
mov %eax, 0x123

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

How much is added?
3: correct!

52Hale | CS450

time

Timeline View: Interleaving #5
Thread 1 Thread 2

mov 0x123, %eax
add %0x2, %eax

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

mov %eax, 0x123

How much is added? 2: incorrect!

53Hale | CS450

time

Non-Determinism
• Concurrency leads to non-deterministic results
• Not deterministic result: different results even with same inputs
• race conditions

• Whether bug manifests depends on CPU schedule! (heisenbug)
• Passing tests means little
• How to program: assume scheduler is malicious
• Assume scheduler will pick bad ordering at some point…

Hale | CS450 54

What do we want?

• Want 3 instructions to execute as an uninterruptable group
• That is, we want them to be an atomic unit

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

critical section

More general:
Need mutual exclusion for critical sections
• if process A is in critical section C, process B can’t be

(okay if other processes do unrelated work)
55Hale | CS450

Synchronization
Build higher-level synchronization primitives in OS

• Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

Monitors Semaphores
Condition Variables

Locks

Loads Stores Test&Set
Disable Interrupts

56Hale | CS450

Locks
Goal: Provide mutual exclusion (mutex)
Three common operations:
• Allocate and Initialize

• pthread_mutex_t mylock = PTHREAD_MUTEX_INITIALIZER;

• Acquire
• Acquire exclusion access to lock;
• Wait if lock is not available (some other process in critical section)
• Spin or block (relinquish CPU) while waiting
• pthread_mutex_lock(&mylock);

• Release
• Release exclusive access to lock; let another process enter critical section
• pthread_mutex_unlock(&mylock);

57Hale | CS450

Summary

• Concurrency is needed to obtain high performance by utilizing
multiple cores
• Threads are multiple execution streams within a single process or

address space (share PID and address space, own registers and stack)
• Context switches within a critical section can lead to non-

deterministic bugs (race conditions)
• Use locks to provide mutual exclusion

Hale | CS450 58

Implementing Synchronization

• To implement, need atomic operations
• Atomic operation: guarantees no other instructions can be

interleaved
• Examples of atomic operations
• Code between interrupts on uniprocessors

• Disable timer interrupts, don’t do any I/O
• Loads and stores of words

• Load r1, B
• Store r1, A

• Special hardware instructions
• atomic test & set
• atomic compare & swap

Hale | CS450 59

Implementing Locks: Attempt #1
Turn off interrupts for critical sections

Prevent dispatcher from running another thread
Code executes atomically

void acquire(lock_t *l) {
disable_interrupts();

}
void release(lock_t *l) {

enable_interrupts();
}

Disadvantages??

60Hale | CS450

Implementing Locks: Attempt #2
Code uses a single shared lock variable
bool lock = false; // shared variable
void acquire() {

while (lock) /* wait */ ;
lock = true;

}

void release() {
lock = false;

}

61Hale | CS450

Why doesn’t this work?

