Concurrency:
Mutual Exclusion (Locks)

Questions Answered in this Lecture:

 What are locks and how do we implement them?

 How do we use hardware primitives (atomics) to support efficient locks?
* How do we extend locks to multiprocessors?

« How do we use locks to implement concurrent data structures?

S
ILLINOIS INSTITUT E\‘ Thanks to Remzi & Andrea Arapci-Dusseau for slide material
OF TECHNOLOGY

Announcements

* P2b is out; plb grades should be posted tonight
* Final exam date set (Monday 5/6, 2-4PM, this room)

ILLINOIS INSTITUTE\‘["‘:‘
OF TECHNOLOGY

CPU 1 CPU 2 RAM

running running

thread 1 thread 2
PageDir B

o

o S
%

(P\;ig:g/i're/:") coDE HEAP |.. |

Review: which registers are shared between threads? Which are different?

ILLINOIS INSTITUTE‘E"

Hale | CS450
OF TECHNOLOGY

CPU 1 CPU 2 RAM

running running

thread 1 thread 2

—
P {E |

Virt Mem k}ODE '—IEAP |

(PageDir A) VRO E | |

ILLINOIS |N3T|TUT|SW Hale | CS450
OF TECHNOLOGY

Review: What do we need for correctness?

* Want 3 instructions to execute as an uninterruptable group

 That is, we want them to be an atomic unit

mov 0x123, %eax
add %0x1, %eax
mov %eax, 0x123

——critical section

More general:
Need mutual exclusion for critical sections

e if process A is in critical section C, process B can’t be
(okay if other processes do unrelated work)

ILLINOIS INSTITUTE‘V’. Hale | CS450
OF TECHNOLOGY

Other Examples

* Consider multi-threaded programs that do more than increment a
shared balance

* E.g., mult-threaded program with a shared linked-list

* All concurrent operations:
inserts element

* Thread B inserts element b
* Thread C looks up element c

ILLINOIS INSTITUTE\‘!"".'-
OF TECHNOLOGY

Shared Linked List

void list insert(list t *L, int key) {

node_t *new = malloc(sizeof(node_t)); typedef struct _ node_t {
assert(new); int key;
new->key = key; struct _ node_t *next;
new->next = L->head; } node_t;
L->head = new;
} typedef struct list t {
node_t *head;

int list lookup(list t *L, int key) {

node_t *tmp = L->head; polist t;
while (tmp) {
if (tmp-}key == key) void llSt_lnlt(llSt_t *L) {
return 1; L->head = NULL;
tmp = tmp->next; }
}
return O;
} What can go wrong?
What schedule leads to a problem?
ILLINOIS INSTITUTE ' Hale | CS450

OF TECHNOLOGY

Linked-List Race

Thread 1 Thread 2

new->key = key

new->next = L->head

new->key = key
new->next = L->head
L->head = new
L->head = new
time
v Both entries point to old head

Only one entry (which one?) can be the new head.

ILLINOIS INSTITUTE‘W

Hale | CS450
OF TECHNOLOGY

Resulting Linked List

old

[orphan node]

LLINOIS INSTITUTE W Hale | CS450
OF TECHNOLOGY

Concurrent Linked List

void list insert(list t *L, int key) {
node_t *new = malloc(sizeof(node t));
assert(new);
new->key = key;
new->next = L->head;
L->head = new;

¥

int list lookup(list t *L, int key) {
node t *tmp = L->head;
while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;
}

return O;

=
=i

ILLINOIS INSTITUTE ¥ Hale | CS450

OF TECHNOLOGY

typedef struct _ node t {

int key;

struct _ node_t *next;
} node_t;

typedef struct list t {
node_t *head;
} list t;

void list init(list t *L) {
L->head = NULL;
}

How do we add locks to this?

10

Concurrent Linked List

void list insert(list t *L, int key) {

node t *new = malloc(sizeof(node t)); typedef struct _ node_t {
assert(new); int key;

new->key = key; struct _ node_t *next;
new->next = L->head; } node_t;

L->head = new;

} typedef struct list t {
int list lookup(list t *L, int key) { pthPead;mute¥_t lock;
node_t *tmp = L->head; . node_t *head;
while (tmp) { ;o list_t;
if (tmp->key == key)
return 1; void list init(list t *L) {
Tmp = tmp->next; L->head = NULL;
} pthread mutex_init(&L->lock, NULL);
return O; }
}

pthread_mutex_t lock;
Hale | CS459ne lock per list

ILLINOIS INSTITUTE ¥

11
OF TECHNOLOGY

Locking Linked Lists : Approach #1

Void list insert(list t *L, int key) {
pthread_mutex_lock(&L->lock); _} node_t *new =
malloc(sizeof(node t));
Consider everything critical section assert(new);

..) new->key = key;
Can critical section be smaller? y Y5
new->next = L->head;

L->head = new;
pthread_mutex_unlock(&L->1lock); ﬁ

inf list lookup(list t *L, int key) {
thread_mutex_lock(&L->lock); — ~
pthread_mutex_lock(&L->lock) —i node t *tmp = L->head;

while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;

pthread_mutex_unlock(&L->1lock); _}}

return 0;
}

e
=i

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY

12

Locking Linked Lists : Approach #2

Void list _insert(list t *L, int key) {
node_t *new =
malloc(sizeof(node t));
assert(new);

thread_mutex_lock(&L->1lock) _}new—>key = key;
rea mutex 10C - ocC 5
p _ _) new->next = L->head;

L->head = new;
pthread_mutex_unlock(&L->lock); r}

int list lookup(list t *L, int key) {
pthread_mutex_lock(&L->lock); node t *tmp = L->head;

while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;

}
pthread_mutex_unlock(&L->1lock); _>r'et urn 0;
}

Critical section as small as possible

=l
.

=

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY

13

Locking Linked Lists : Approach #3

Void 1list_insert(list_t *L, int key) {
node_t *new =
What about lookup? malloc(sizeof(node_t));
assert(new);

pthread_mutex_lock(&L->lock); _}new—>key = key;
new->next = L->head;

L->head = new;
pthread_mutex_unlock(&L->lock); ﬁ

int list lookup(list t *L, int key) {
th lock(&L->1ock); - —
pthread_mutex_lock(&L->1lock) _B node t *tmp = L->head;

while (tmp) {
if (tmp->key == key)
return 1;
tmp = tmp->next;

h
thread_mutex_unlock(&L->lock); _>
P - - ()3 return 9;
t

If no 1ist_delete(), locks not necessary

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY e

14

Synchronization

Build higher-level synchronization primitives in OS
 Operations that ensure correct ordering of instructions across threads

Motivation: Build them once and get them right

LLINOIS INSTITUTE W Hale | CS450
OF TECHNOLOGY

15

Lock Implementation Goals

Correctness
* Mutual exclusion
* Only one thread in critical section at a time
* Progress (deadlock-free)
 If several simultaneous requests, must allow one to proceed
* Bounded (starvation-free)
* Must eventually allow each waiting thread to enter

Fairness
Each thread waits for same amount of time

Performance
CPU is not used unnecessarily (e.g., spinning)

ILLINOIS INSTITUTE ¥ Hale | CS450
OF TECHNOLOGY

16

Implementing Synchronization

* To implement, need atomic operations
* Atomic operation: guarantees no other instructions can be interleaved

* Examples of atomic operations
* Code between interrupts on uniprocessors
* Disable timer interrupts, don’t do any I/O
* Loads and stores of words
* Loadrl, B
 Storerl, A
» Special hardware instructions

* atomic test & set
* atomic compare & swap

ILLINOIS INSTITUTE‘F/ Hale | CS450 17
OF TECHNOLOGY

Implementing Locks: Using Interrupts

Turn off interrupts for critical sections
* Prevent dispatcher from running another thread
* Code between interrupts executes atomically

void acquire(lock t *1) {

disableInterrupts();
}
void release(lock t *1) {
enableInterrupts();
}

Disadvantages??

* Only works on uniprocessors
* Process can keep control of CPU for arbitrary length
* Cannot perform other necessary work

ILLINOIS |N3T|TUT|§V"

Hale | CS450
OF TECHNOLOGY

Implementing Locks: Using Load+Store

Code uses a single shared lock variable

bool lock = false;

volid acquire(bool *lock) {
while (*lock);

*lock = true;

void release(bool *lock) {

*lock = false;

}

Why doesn’t this work? Example schedule that fails with 2
threads?

ILLINOIS INSTITUTE‘V’. Hale | CS450
OF TECHNOLOGY

19

ILLINOIS |N5T|TUT|S'[’7
OF TECHNOLOGY

*lock == 0 1initially

Thread 1 Thread 2

while (*lock == 1);
while (*lock == 1);
*lock = 1;

*lock = 1;

Both threads grab lock!
Problem: Testing lock and setting lock are not atomic

Hale | CS450

20

xchg: atomic exchange, or test-and-set

int xchg(int *addr, int newval) {
int old = xaddr;
*xaddr = newval;
return old;

+ S .
static inline unsigned

xchg(volatile unsigned int xaddr, unsigned int newval)
{
unsigned result;
asm volatile("lock; xchgl %0, %1" :
"+m'" (xaddr), "=a" (result)
"1" (newval) : "cc");
return result;

ILLINOIS INSTITUTE"}. Hale | CS450 21
OF TECHNOLOGY

XCHG Implementation

typedef struct _ lock t {
int flag;
} lock t;

void init(lock t *lock) {
lock->flag = ??;

}
int xchg(int xaddr, int newval)

void acquire(lock t *lock) {
???

}

void release(lock t *lock) {
lock->flag = ??;

}

ILLINOIS INSTITUTE

f..’
: Hale | CS450 22
OF TECHNOLOGY

XCHG Implementation

typedef struct _ lock t {
int flag;
} lock t;

void init(lock t *lock) {
lock->flag = ©;
}

void acquire(lock t *lock) {
while (xchg(&lock->flag, 1) ==

}

void release(lock t *lock) {
lock->flag = ©;

}

ILLINOIS INSTITUTE y
OF TECHNOLOGY

Hale | CS450

1);

23

Other Atomic HW Instructions

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *addr;

if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, ?, ?) == ?) ;
// spin-wait (do nothing)

ILLINOIS INSTITUTE‘V’. Hale | CS450
OF TECHNOLOGY

24

Other Atomic HW Instructions

int CompareAndSwap(int *ptr, int expected, int new) {
int actual = *addr;
if (actual == expected)
*addr = new;
return actual;

}

void acquire(lock t *lock) {
while(CompareAndSwap(&lock->flag, @0, 1) ==
// spin-wait (do nothing)

ILLINOIS INSTITUTE‘V’. Hale | CS450
OF TECHNOLOGY

1) ;

25

Lock Implementation Goals

Correctness
e Mutual exclusion
* Only one thread in critical section at a time
* Progress (deadlock-free)
* If several simultaneous requests, must allow one to proceed
* Bounded (starvation-free)
* Must eventually allow each waiting thread to enter

Fairness
Each thread waits for same amount of time

Performance
CPU is not used unnecessarily

ILLINOIS INSTITUTE"X" Hale | CS450
OF TECHNOLOGY

26

Basic Spinlocks are Unfair

unlock lock unlock lock unlock lock unlock

Scheduler is independent of locks/unlocks

LLINOIS INSTITUTE W Hale | CS450
OF TECHNOLOGY

lock

27

Fairness: Ticket Locks

Idea: reserve each thread’s turn to use a lock
* Each thread spins until their turn.
* Use new atomic primitive, fetch-and-add:
int fetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;

return old;

}
Acquire: Grab ticket;
Spin while not thread’s ticket != turn

Release: Advance to next turn

ILLINOIS INSTITUTE ¥ Hale | CS450 28
OF TECHNOLOGY

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

29

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

30

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

31

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

32

Ticket Lock Example

A lock(): .

B lock(): Ticket Turn
C lock(): n
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock(): n
A runs

A unlock():
C lock():

ILLINOIS |N3T|TUTE§V7 Hale | CS450
OF TECHNOLOGY

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

34

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

35

Ticket Lock Example

A lock(): .

B lock(): Ticket Turn
C lock(): n
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock(): n
A runs

A unlock():
C lock():

ILLINOIS |N3T|TUTE§V7 Hale | CS450
OF TECHNOLOGY

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

37

Ticket Lock Example

ILLINOIS |N3T|TUTE§V7
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

38

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

39

Ticket Lock Example

A lock(): .

B lock(): Ticket Turn
C lock(): n
A unlock():
B runs
A lock():
B unlock():
C runs
C unlock(): n
A runs

A unlock():
C lock():

ILLINOIS |N3T|TUTE§V7 Hale | CS450
OF TECHNOLOGY

Ticket Lock Example

ILLINOIS INSTITUTEﬁW
OF TECHNOLOGY

A lock():
B lock():
C lock():

A unlock():

B runs
A lock():

B unlock():

Cruns

C unlock():

A runs

A unlock():

C lock():

Ticket

Hale | CS450

Turn

41

Ticket Lock Implementation

typedef struct __lock_t {
int ticket;

void acquire(lock t *lock) {

int turn; int myturn = FAA(&lock->ticket);
} while (lock->turn != myturn); // spin
void lock init(lock t *lock) }
{
lock->ticket = ©; void release (lock_t *lock) {
lock->turn = 0; FAA(&lock->turn);
}

ILLINOIS INSTITUTE y

Hale | CS450 42
OF TECHNOLOGY

Spinlock Performance

Fast when...

- many CPUs

- locks held a short time

- advantage: avoid context switch

Slow when...

- one CPU

- locks held a long time

- disadvantage: spinning is wasteful

ILLINOIS INSTITUTE‘V’. Hale | CS450
OF TECHNOLOGY

43

CPU Scheduler is Ignorant

lock unlock lock

CPU scheduler may run B instead of
even though B is waiting for

ILLINOIS INSTITUTE‘EE" Hale | CS450
OF TECHNOLOGY

44

Ticket Lock with yield()

typedef struct _ lock t { void acquire(lock_t *lock) {
int ticket; i .
' e int myturn = FAA(&lock->ticket);
int turn;
} while (lock->turn != myturn)
yield();
void lock_init(lock t *lock)
{ }
lock->ticket = 0;
lock->turn = @; void release (lock_t *lock) {
} FAA(&lock->turn);
}

ILLINOIS INSTITUTE‘V’. Hale | CS450
OF TECHNOLOGY

Yield Instead of Spin

lock unlock lock

no yield:

lock unlock lock

yield: JA\ I IA I
20 40

0 60 0 100 120 140 160

N
ILLINOIS INSTITUTE" Hale | CS450 46
OF TECHNOLOGY

Spinlock Performance

Waste...
Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

So even with yield, spinning is slow with high thread
contention

Next improvement: Block and put thread on waiting
gueue instead of spinning

ILLINOIS INSTITUTE\{’.’-
OF TECHNOLOGY

