
Packet Sniffing and Spoofing

1



Shared Networks

2

Shared Networks 
Every	network	packet	reaches	every	computer's	network	
Interface	card,	which	then	filters	packets	based	on	the	MAC	
address.	

A	network	packet	has	multiple	
concatenated	components.		



Packet Flow in the System 

Network	Card	

network	packet	

check	if	destination	address	matches	the	
card's	MAC	address	

DMA	transfer	of	packet	to	kernel	memory	

Hardware	

Kernel	buffer	

Link	Level	Driver	

Protocol	Stack	Protocol	Stack	

Kernel	

User	Space	
Applications	only	receive	packets	that	are	
meant	for	the	CPU	and	the	registered	port	

Kernel	only	receive	packets	that	are	meant	for	
the	CPU		

All	packets	on	the	network	arrive	here	

How Packets Are Received 

3

NIC - Network Interface Card 
• a physical/logical link between a machine 

and a network
• each has a MAC address
• hear all the frames on the wire



Promiscuous Mode 

• The frames that are not destined to a given NIC are discarded
• When operating in promiscuous mode, NIC passes every frame received 

from the network to the kernel
• If a sniffer program is registered with the kernel, it will be able to see all 

the packets
• In Wi-Fi, it is called Monitor Mode

4



Promiscuous Mode 

5

Promiscuous Mode 

Network	
Card(P)	

network	packet	

No	filtering	done	if	the	network	card	is	
working	in	promiscuous	mode	

DMA	transfer	of	packet	to	kernel	memory	

Hardware	

Kernel	buffer	

Link	Level	Driver	

Protocol	Stack	

Kernel	

User	Space	
Application	can	receives	all	packets	that	the	
NIC	receives.	

Kernel	receive	all	packets	that	the	NIC	receives	

All	packets	on	the	network	arrive	here	



Packet Sniffing
• Packet sniffing describes the process of capturing live data as they 

flow across a network
• Applications that register with the kernel so as to capture all packets 

seen in the network.
• Typically requires superuser permissions 
• Let us first see how computers receive packets.

6



Receiving Packets Using Socket

Create the socket

Provide information 
about server

Receive packets

7

Domain: IPV4. Other alternatives are AF_INET6, etc.

Type: datagram, connectionless, fixed length, unreliable 

associate an address with the socket using bind() 



Receiving Packets Using Socket

Create the socket

Provide information 
about server

Receive packets

8

htons(): unsigned short from host order to network order 
htonl(): unsigned long from host order to network order 
ntohs() : unsigned short network to host order
ntohl() : unsigned long, network to host order 



Endianness

• Endianness: a term that refers to 
the order in which a given multi-
byte data item is stored in 
memory.
– Little Endian: store the most 

significant byte of data at the 
highest address

– Big Endian: store the most 
significant byte of data at the 
lowest address

9



Endianness In Network Communication

• Computers with different byte orders will “misunderstand” 
each other.
– Solution: agree upon a common order for communication
– This is called “network order”, which is the same as big endian order

• All computers need to convert data between “host order” and 
“network order” .

10



Receiving Packets Using Raw Socket
Creating a raw socket Capture all types of packets

Enable the 
promiscuous 
mode 

Wait for packets

11



Normal Socket vs Raw Socket

12

• An application creating a normal socket like a stream or datagram, will not receive the 
packet headers. Information like MAC address, source IP, etc. is not received. Instead only 
the payload present in each packet. 

• In raw sockets, the headers are not clipped. Application obtains an unintercepted packet. 

Packet Sniffers 
Specify	that	the	socket	you	want	to	create	is	a	RAW	socket.		

RAW	SOCKET	
An	application	creating	a	normal	
socket	like	a	stream	or	datagram,	
will	not	receive	the	packet	
headers.	Information	like	MAC	
address,	source	IP,	etc.	is	not	
received.	Instead	only	the	payload	
present	in	each	packet.	
	
In	raw	sockets,	the	headers	are	not	
clipped.	Application	obtains	an	
unintercepted	packet.	



Flooding of Packets in User Space
• Applications that register with the kernel so as to capture all packets 

seen in the network. 
• Typically, sniffers are only interested in a small subset of packets, all the 

other packets are discarded. 
– Improves performance considerably (less processing time)
– Would require much less expensive hardware 

• Filtering must be as close to the NIC as possible (filter as early as 
possible)

• BSD packet filtering (BPF) provides a means by which sniffers can specify 
to the kernel, the packets they are interested in. 

13



BSD Packet Filter (BPF)

• BPF allows a user-
program to attach a 
filter to the socket, 
which tells the kernel 
to discard unwanted 
packets.

• An example of the 
compiled BPF code is 
shown here.

14



BSD Packet Filter (BPF)

• A compiled BPF pseudo-code can be attached to a socket through 
setsockopt()

• When a packet is received by kernel, BPF will be invoked
• An accepted packet is pushed up the protocol stack. See the diagram 

on the following slide.

setsockopt(sock, SOL_SOCKET, SO_ATTACH_FILTER, &bpf, sizeof(bpf))

15



Packet Flow With/Without Filters

16



Limitations of the Approach

• The simple sniffer
– Not portable across different operating systems
– Not easy to set filters
– Not explore any optimization to improve performance

• PCAP library
– Still uses raw sockets internally, but its API is standard across all 

platforms. OS-specifics are hidden by PCAP’s implementation.
– Allows programmers to specify filtering rules using human readable 

Boolean expressions

17



Packet Sniffing Using the PCap API

Filter

Invoke this function for every captured packet

Initialize a raw 
socket, set the 
network device 
into promiscuous 
mode.

18

fills compiled BPF 
program in fp. Has the 
form struct 
bpf_program *fp

filled with the packet received; 
contains the raw ICMP packet 



Processing Captured Packet: Ethernet Header

19

Processing Ethernet Header 



Processing Captured Packet: Ethernet Header

The packet argument 
contains a copy of the 
packet, including the 
Ethernet header. We 
typecast it to the Ethernet 
header structure.

Now we can access the 
field of the structure

20



Processing Captured Packet: IP Header

21

Processing IP Packet 

*packet	

*(packet	+	sizeof(struct	ethheader))	



Processing Captured Packet: IP Header

Find where the IP header 
starts and typecast it to 
the IP Header structure.

Now we can easily access 
the fields in the IP 
header.

22



Further Processing Captured Packet

• If we want to further process the packet, such as printing out the 
header of the TCP, UDP and ICMP, we can use the similar technique.
– We move the pointer to the beginning of the next header and type-cast
– We need to use the header length field in the IP header to calculate the actual 

size of the IP header

• In the following example, if we know the next header is ICMP, we can 
get a pointer to the ICMP part by doing the following:

23



Packet Spoofing

• When some critical information in the packet is forged, we 
refer to it as packet spoofing. 

• Many network attacks rely on packet spoofing.

• Let us see how to send packets without spoofing.

24



Sending Normal Packets Using Sockets

Testing
• netcat (nc) command to run 

a UDP server on 10.0.2.5.
• run the program on the left 

from another machine
• message delivered to the 

server machine

25



Manipulating Transmitted Packets 
• Generally, transmitting packets has only control of few fields in 

the header. 
– e.g., destination IP address can be set, source IP address is not set
– OS will automatically fill these fields before transmitting the packet to 

the hardware 
• Spoofing 
– Permits manipulation of critical fields in the packet headers 
– Creates unrealistic / bogus packets

• E.g., Transmit a TCP packet with SYN and FIN bits turned on 
• The response from the receiver is unpredictable (depends on the OS )

– Is used in many network attacks
• E.g., TCP SYN Flooding, TCP session hijacking, DNS cache poisoning attack 
• Supplied information depends on the type of attack being carried out 

26



Spoofing Packets Using Raw Sockets

Two major steps in packet spoofing
• Constructing the packet 
• Sending the packet out

27



Spoofing Packets: Step 1. Constructing the Packet

Fill in the ICMP Header

Find the starting point 
of the ICMP header, 
and typecast it to the 
ICMP structure

Fill in the ICMP header 
fields

28



Spoofing Packets: Step 1. Constructing the Packet

Fill in the IP Header

Typecast the buffer to 
the IP structure

Fill in the IP header 
fields

Finally, send out the packet

29



Spoofing Packets: Step 2. Sending Packets Using 
Raw Sockets

For raw socket programming, 
since the destination 
information is already 
included in the provided IP 
header, we do not need to fill 
all the fields

Since the socket type is raw 
socket, the system will send 
out the IP packet as is. 

We use setsockopt() to enable 
IP_HDRINCL on the socket. 

30



Spoofing UDP Packets
Constructing UDP 
packets is similar, 
except that we need to 
include the payload 
data now.

31



Spoofing UDP Packets (continued)

Testing: Use the nc command to run a UDP server on 10.0.2.5. We then 
spoof a UDP packet from another machine. We can see that the spoofed UDP 
packet was received by the server machine.

32



Sniffing and Then Spoofing

• In many situations, we need to capture packets first, and then 
spoof a response based on the captured packets. 

• Procedure (using UDP as example)
– Use PCAP API to capture the packets of interests
– Make a copy from the captured packet
– Replace the UDP data field with a new message and swap the source 

and destination fields 
– Send out the spoofed reply

33



UDP Packet

34



UDP Packet (Continued)

35



Packing Sniffing Using Scapy

36



Spoofing ICMP & UDP Using Scapy

37



Sniffing and Then Spoofing Using Scapy

38



Packet Spoofing: Scapy v.s C

• Python + Scapy
– Pros: constructing packets is very simple
– Cons: much slower than C code

• C Program (using raw socket)
– Pros: much faster
– Cons: constructing packets is complicated

• Hybrid Approach
– Using Scapy to construct packets
– Using C to slightly modify packets and then send packets

39


