Set-UID Privileged Programs

Need for Privileged Programs

* Password Dilemma
* Permissions of /etc/shadow File:

—rW—f=————-— 1 root shadow 1443 May 23 12:33 /etc/shadow
t Only writable to the owner

 How would normal users change their password?

root:$6$012BPz.KSTbPkT6H6Db4 /B8cLWDbQI1cFjnOR25yqtqrSrFeWfCgybQWWnwR4ks /. rjqyM7Xw
h/pDyc5U1BWOzkWh7T9ZGu. :15933:0:99999:7:::

daemon:*:15749:0:99999:7:::

bin:*:15749:0:99999:7:::

Sys:*:15749:0:99999:7:::

Sync:*:15749:0:99999:7:::

games:*:15749:0:99999:7:::

man:*:15749:0:99999:7:::

1lp:*:15749:0:99999:7:::

Two-Tier Approach

* Implementing fine-grained access
control in operating systems make OS
over complicated.

* OS relies on extension to enforce fine
grained access control

* Privileged programs are such
extensions

Programs

Fine-grained
Access Control by

Privileged Programs

Generic Access Control by OS
— (e.g. system calls) -

Protected Resource

Types of Privileged Programs

* Daemons
* Computer program that runs in the background
* Needs to run as root or other privileged users

* Set-UID Programs
* Widely used in UNIX systems
* Program marked with a special bit

Set-UID Concept

 Allow user to run a program with the program owner’s privilege.

* Allow users to run programs with temporary elevated privileges
 Example: the passwd program

$ 1s -1 /usr/bin/passwd
-rwsr-xr-x 1 root root 41284 Sep 12 2012 /usr/bin/passwd

Set-UID Concept

Every process has two User IDs.

Real UID (RUID): Identifies real owner of process
Effective UID (EUID): Identifies privilege of a process
* Access control is based on EUID

When a normal program is executed, RUID = EUID, they both equal
to the ID of the user who runs the program

When a Set-UID is executed, RUID # EUID. RUID still equal to the
user’s ID, but EUID equals to the program owner’s ID.

* |If the program is owned by root, the program runs with the root privilege.

urn a Program into Set-UID

seed@M:~$ cp /bin/cat ./mycat

[
Change the owner seed@/M:~$ sudo chown root mycat

-rwXxr-xr-x 1 root seed 46764 Nov 1 13:09
seed@VM: ~$

seed@VM:~$ mycat /etc/shadow
mycat: /etc/shadow: Permission denied
seed@VM:~$

* Before Enabling
Set-UID bit:

seed@VM:~$ sudo chmod 4755 mycat
seed@VM:~$ mycat /etc/shadow
root:$6$012BPz.KSTfbPkT6H6Db4 /B8cLWbQI1cF jn!
h/pDyc5U1BWOzkWh7T9ZGu. :15933:0:99999:7:::
daemon:*:15749:0:99999:7:::
bin:*:15749:0:99999:7:::
Sys:*:15749:0:99999:7:::

» After Enabling the
Set-UID bit :

How it Works

A Set-UID program is just like any other program, except that it has a
special marking, which a single bit called Set-UID bit

$ cp /bin/id ./myid

$ sudo chown root myid

$./myid

uid=1000 (seed) gid=1000 (seed) groups=1000 (seed),

$ sudo chmod 4755 myid
$./myid
uid=1000 (seed) gid=1000 (seed) euid=0 (root)

Example of Set UID

$ cp /bin/cat ./mycat

$ sudo chown root mycat

$ 1s -1 mycat « Not a privileged program
—-rwxr—-xXr—-x 1 root seed 46764 Feb 22 10:04 mycat

$./mycat /etc/shadow

./mycat: /etc/shadow: Permission denied

$ sudo chmod 4755 mycat « Become a privileged program
$./mycat /etc/shadow

root :56S012BPz.KSfbPkT6H6Db4 /B8c. ..
daemon:*:15749:0:99999:7:::

$ sudo chown seed mycat « [t is still a privileged

o ehmeel 4799 myEat program, but not the root
$./mycat /etc/shadow

./mycat: /etc/shadow: Permission denied [Mﬂvﬂege

How is Set-UID Secure?

* Allows normal users to escalate privileges
* This is different from directly giving the privilege (sudo command)
* Restricted behavior — similar to superman designed computer chips

e Unsafe to turn all programs into Set-UID
* Example: /bin/sh
* Example: vi

Attack Surfaces of Set-UID Programs

User Inputs
lo
©
System Inputs @ - Environment Variables

that can be
controlled by - Set-UID Programs

users =
(4 Non-privileged Process

& @ Controlled by User

Attacks via User Inputs

User Inputs: Explicit Inputs

* Buffer Overflow — More information in Chapter 4
* Overflowing a buffer to run malicious code

* Format String Vulnerability — More information in Chapter 6
e Changing program behavior using user inputs as format strings

Attacks via User Inputs

CHSH — Change Shell

e Set-UID program with ability to change default shell programs
* Shell programs are stored in /etc/passwd file

Issues
* Failing to sanitize user inputs
e Attackers could create a new root account

Attack
bob:$6SjUODEFsfwfi3:1000:1000:Bob Smith,,, :/home/bob:/bin/bash

Attacks via System Inputs

System Inputs

* Race Condition — More information in Chapter 7
e Symbolic link to privileged file from a unprivileged file
* Influence programs
e Writing inside world writable folder

Attacks via Environment Variables

* Behavior can be influenced by inputs that are not visible inside a
program.

* Environment Variables : These can be set by a user before running a
program.

* Detailed discussions on environment variables will be in Chapter 2.

Attacks via Environment Variables

e PATH Environment Variable

* Used by shell programs to locate a command if the user does not provide the
full path for the command

 system(): call /bin/sh first
e system(“Is”)
* /bin/sh uses the PATH environment variable to locate “Is”
* Attacker can manipulate the PATH variable and control how the “Is” command is found

* More examples on this type of attacks can be found in Chapter 2

Capability Leaking

* In some cases, Privileged programs downgrade themselves during
execution

* Example: The su program
* This is a privileged Set-UID program
* Allows one user to switch to another user (say userl to user2)
* Program starts with EUID as root and RUID as userl

» After password verification, both EUID and RUID become user2’s (via privilege
downgrading)

* Such programs may lead to capability leaking
* Programs may not clean up privileged capabilities before downgrading

Attacks via Capability Leaking: An Example

The /etc/zzz file is only
writable by root

File descriptor is created
(the program is a root-
owned Set-UID program)

The privilege is
downgraded

Invoke a shell program,
so the behavior
restriction on the
program is lifted

fd = open("/etc/zzz", O_RDWR | O_APPEND);
f

if (fd == -1) {
printf ("Cannot open /etc/zzz\n");
exit (0);

}

// Print out the file descriptor value
printf("fd is %d\n", fd);

// Permanently disable the privilege by making the
// effective uid the same as the real uid
setuid (getuid());

// Execute /bin/sh
v[0] = "/bin/sh"; v[1] = 0;
execve (v[0], v, 0);

Attacks via Capability Leaking (Continued)

The program
forgets to close
the file, so the
file descriptor is

still valid.
Capability Leak

$ gcc =0 cap_leak cap_leak.c

$ sudo chown root cap_leak

[sudo] password for seed:

$ sudo chmod 4755 cap_leak

$ 1s -1 cap_leak

-rwsr-xr-x 1 root seed 7386 Feb 23 09:24 cap_leak

$ cat /etc/zzz

bbbbbbbbbbbbbbb

$ echo aaaaaaaaaa > /etc/zzz

bash: /etc/zzz: Permission denied < Cannot write to the file
$ cap_leak

fd is 3

$ echo ccccccccececcee >& 3 <= Using the leaked capability
S exit

$ cat /etc/zzz

bbbbbbbbbbbbbbb

R e e (o e e « File modified

How to fix the program?
Destroy the file descriptor before downgrading the privilege (close the file)

Capability Leaking in OS X — Case Study

* OS X Yosemite found vulnerable to privilege escalation attack related
to capability leaking in July 2015 (OS X 10.10)

* Added features to dynamic linker dy1d
 DYLD_PRINT_TO_FILE environment variable

* The dynamic linker can open any file, so for root-owned Set-UID
programs, it runs with root privileges. The dynamic linker dy1d, does
not close the file. There is a capability leaking.

* Scenario 1 (safe): Set-UID finished its job and the process dies.
Everything is cleaned up and it is safe.

* Scenario 2 (unsafe): Similar to the “su” program, the privileged
program downgrade its privilege, and lift the restriction.

Invoking Programs

* Invoking external commands from inside a program

* External command is chosen by the Set-UID program
» Users are not supposed to provide the command (or it is not secure)

e Attack:

* Users are often asked to provide input data to the command.

* |f the command is not invoked properly, user’s input data may be turned into
command name. This is dangerous.

Invoking Programs : Unsafe Approach

int main(int argc, char xargv([])

{

char xcat="/bin/cat";

* The easiest way to invoke
an external command is
the system() function.

LEzmee = 2 | * This program is supposed
printf ("Please type a file name.\n");

T torunthe /bin/cat
) program.

* |tis a root-owned Set-UID
char xcommand = malloc(strlen(cat) + strlen(argv([l]) + 2); h
sprintf (command, "%s %s", cat, argv[l]); progr.am' SOt_ € progr.am
system (command) ; can view all files, but it

return 0 ; can’t write to any file.

Question: Can you use this program to run other command, with the root privilege?

Invoking Programs : Unsafe Approach (Continued)

gcc —o catall catall.c

sudo chown root catall

sudo chmod 4755 catall

ls -1 catall

—rwsr—xXxr—-x 1 root seed 7275 Feb 23 09:41 catall
$ catall /etc/shadow
root:$6$012BPz.K$SfbPkT6H6Db4/B8clWb. ...

Uy 0 U

daemon:*:15749:0:99999:7::: Problem: Some
bin:*:15749:0:99999:7:::

Sys:%:15749:0:99999:7: : : We can get a part of the data
sync:+:15749:0:99999:7: : : root shell with becomes code

games:*:15749:0:99999:7)/ this inpUt (Command name)

$ catall "aa;/bin/sh"

/bin/cat: aa: No such file or directory

= <« Got the root shell!

id

uid=1000 (seed) gid=1000 (seed) euid=0(root) groups=0 (root),

A Note

* In Ubuntu 16.04, /bin/sh points to /bin/dash, which has a
countermeasure

* It drops privilege when it is executed inside a set-uid process

* Therefore, we will only get a normal shell in the attack on the
previous slide

* Do the following to remove the countermeasure

Before experiment: link /bin/sh to /bin/zsh
$ sudo 1ln -sf /bin/zsh /bin/sh

After experiment: remember to change it back
$ sudo 1ln -sf /bin/dash /bin/sh

Invoking Programs Safely: using execwve ()

int main(int argc, char xargv][])

{

char *v[3];

if (argc < 2) {
printf ("Please type a file name.\n");

return 1; execve (v[0], v, 0)
} —_— —
v[0] = "/bin/cat"; v[1l] = argv[1l]; v[2] = O; ///)'r ‘\\\
execve (v[0], v, 0); Command name Input data are
is provided here provided here
return 0 ;
} (by the program) (can be by user)

Why is it safe?
Code (command name) and data are clearly separated; there is no way for
the user data to become code

Invoking Programs Safely (Continued)

L)

gcc —o safecatall safecatall.c

sudo chown root safecatall

sudo chmod 4755 safecatall
safecatall /etc/shadow
root:$65012BPz.KS$SfbPkT6H6Db4 /B8cLWb. ...
daemon:x:15749:0:99999:7:::
bin:%:15749:0:99999:7:::
sys:x:15749:0:99999:7:::
sync:*:15749:0:99999:7:::
games:*:15749:0:99999:7: ::

Uy U A

$ safecatall "aa; /bin/sh"
/bin/cat:|aa; /bin/sh]: No such file or directory < Attack failed!

¢

The data are still treated as data, not code

Additional Consideration

* Some functions in the exec() family behave similarly to execve(), but
may not be safe

» execlp(), execvp() and execvpe() duplicate the actions of the shell. These
functions can be attacked using the PATH Environment Variable

Invoking External Commands in Other Languages

* Risk of invoking external commands is not limited to C programs

* We should avoid problems similar to those caused by the system() functions
* Examples:

* Perl: open() function can run commands, but it does so through a shell
* PHP: system() function

<?php
print ("Please specify the path of the directory");
print ("<p>");
$dir=$_GET[’dir’];

print ("Directory path: " . $dir . "<p>");
system("/bin/ls $dir");

?>

e Attack:

e http://localhost/list.php?dir=.;date
e Command executed on server: “/bin/ls .;date”

Principle of Isolation

Principle: Don’t mix code and data.

Attacks due to violation of this principle :
e system() code execution
* Cross Site Scripting — More Information in Chapter 10
e SQL injection - More Information in Chapter 11
* Buffer Overflow attacks - More Information in Chapter 4

Principle of Least Privilege

* A privileged program should be given the power which is required to
perform it’s tasks.

* Disable the privileges (temporarily or permanently) when a privileged
program doesn’t need those.

* In Linux, seteuid() and setuid() can be used to disable/discard
privileges.

 Different OSes have different ways to do that.

Summary

* The need for privileged programs

* How the Set-UID mechanism works

 Security flaws in privileged Set-UID programs
 Attack surface

* How to improve the security of privileged programs

