
Virtual Private Network

1

Introduction
• Private network - physically disconnected from the outside Internet
• Users Authenticated

– Still vulnerable if the internal resources use IP address as the basis for
authentication

• Content Protected
– Communication within the private network cannot be sniffed from outside.

• Integrity Preserved
– Nobody from outside the network can spoof.

• If we grant access from outside to the private network, the attack
surface will significantly broaden.

2

Virtual Private Network
VPN allows users to create a secure, private network over a public
network, such as the Internet.

• Outside computers must go through the VPN server to reach the hosts inside
a private network via authentication.

• VPN server is exposed to the outside, and the internal computers are still
protected via firewalls or reserved IP addresses. 6	

Virtual	Private	Networks	

6	

Only	way	to	connect	to	a	system	in	the	private	network	is	via	the	VPN	server.	
Needs	to	be	Transparent.	The	VPN	client	should	be	ignorant	that	it	is	a	remote	client.		

Internet	
Firewall	

VPN	Server	

Client	

3

A Typical Setup

This is a typical VPN setup where the “Client” machine wants to connect
with machine “V” on a private network. “Client” uses the “VPN Server”
to get authenticated to the private network

IP Tunneling

4

IP Tunneling 9	

IP	Tunneling	

9	

Firewall	

VPN	Client	

IP	Packet	

IP	Packet	IP	head	

Encrypted	packet	

Encrypted	packet	IP	head	

for	the	destination	

for	the	VPN	server	

Destination	

to	VP
N	Ser

ver	

Encrypted	packet	IP	head	

IP	Packet	IP	head	
decrypt	

Forward	to	destination	

5

Two Types of IP Tunneling
• IPSec tunneling
– It uses IPSec protocol which operates at the IP layer and has a

tunneling mode.
– The entire IP packet is encapsulated into a new IP packet with a new

header added.
– Done at the

kernel level

6

Two Types of IP Tunneling
• TLS tunneling
– It uses TLS library at the application layer to achieve tunneling.
– The entire IP packet is encapsulated into a new TCP/UDP packet with

a new header added.
– Done at the

application level

7

An Overview of How TLS/SSL VPN Works
This is just a normal TCP or
UDP based SSL connection

Satellite Site

8

Primary Site

An Overview of How TLS/SSL VPN Works

9

1. Mutual authentication using PKC,
password authentication

An Overview of How TLS/SSL VPN Works

10

2. RoutingAny packet to 10.0.8.x will be
routed to the VPN client

Any packet to 10.0.7.x will be
routed to the VPN server

An Overview of How TLS/SSL VPN Works

11

• Encapsulate the frame received in a TLS

packet and directed to the VPN server

• Done in the application layer

• Not easily achieved

Promiscuous mode, Raw packets, filtering

• Alternatively: Virtual Network Cards

Virtual Network Cards
• Most operating systems have two types of network interfaces:

– Physical: Corresponds to the physical Network Interface Card (NIC)
– Virtual: A virtualized representation of computer network interfaces that may or may

not correspond directly to the NIC card. Example: loopback device

• TUN Virtual Interface
– Work at OSI layer 3 or IP level
– Sending any packet to TUN will result in the packet being delivered to user space

program

• TAP Virtual Interfaces
– Work at OSI layer 2 or Ethernet level
– Used for providing virtual network adapters for multiple guest machines connecting

to a physical device of the host machine

12

TUN/TAP Interface

• How can the Tunnel
application get an IP
packet?
– Typically, applications

interact with kernel
using socket

– Using socket, kernel
only gives the data part
of a packet to
applications

– Applications need to
use a different way to
interact with kernel

Socket
Interface

13

Creating a TUN Interface

The flag IFF_TUN
specifies that we are
creating a TUN
interface

14

Register a TUN
device with the
kernel

Configure the TUN Interface

• Find the TUN interface

• Assign an IP address to the TUN interface and bring it up

15

Set UP the Routing

Routing
packets to
the tunnel

16

Set UP the Routing

Packets to this destination should be routed
to the tun0 interface, i.e., they should go
through the tunnel.

All other traffic will be routed to
this interface, i.e., they will not
go through the tunnel

17

Experiment: Reading From TUN Interface

We did an experiment by sending a ping packet to 10.0.8.32. The packet
was sent to the TUN interface and then to our program. We use “xxd” to
read from the interface and convert the into hexdump.

0a00 0820: Destination IP (10.0.8.32)

0a00 0863: Source IP (10.0.8.99)

IP
 H

ea
de

r

18

Experiment: Writing To TUN Interface

• We can write data to TUN interfaces.
• We can create a valid packet using the same “xxd” command.
• Copy-paste the xxd output from the previous slide into a file

called “hexfile” and run “xxd –r hexfile > packetfile”.
• Now we write the packetfile to the interface:

• We should be able to observe the packet using Wireshark.

19

Establish a Transport-Layer Tunnel

• A tunnel is just a TLS/SSL connection.
• Two applications (VPN client and server applications) just

establish a TLS/SSL connection between themselves.
• Traffics inside are protected by TLS/SSL
• What makes this TLS/SSL connection a tunnel?
– The payloads inside are IP packets
– That is why it is called IP tunnel

20

How to Send/Receive Packets via Tunnel
Sending a packet via the tunnel
• Get an IP packet from the TUN interface
• Encrypt it (also add MAC)
• Send it as a payload to the other end of

the tunnel

Receiving a packet from the tunnel
• Get a payload from the tunnel
• Decrypt it and verify its integrity
• We get the actual packet
• Write the packet to the TUN interface

21

Monitoring Both Interfaces
• Each tunnel application has

two interfaces: socket and TUN
• Need to monitor both
• Forward packets between

these two interfaces

22

Implementation (Monitoring the 2 Interfaces)

select() will be blocked
until one of the interfaces
has data.

23

Implementation (TUN à Socket)

Note: the encryption step is omitted from the code (for the sake of simplicity)
24

Implementation (Socket à TUN)

Note: the decryption step is omitted from the code (for the sake of simplicity)
25

Case Study: Configuring a VPN

26

Configure VPN Server

• On VPN Server, we first run
the server program.

• Configure the tun0 interface.
– We use 10.4.2.0/24 as IP prefix for the TUN interface (for both

VPN Client and VPN Server)
• The following two commands assign the IP address to the

tun0, bring it up and then add a corresponding route to
routing table.

27

Configure VPN Client

• On VPN Client, we first run
the client program.

• Add route for the 10.4.2.0/24 network.
• Add a route, so that all the packets for 192.168.60.0/24 are

routed to the tun0 interface.

28

Configure Host V

• The reply packets should go back
via the same VPN tunnel, so that
they are protected.

• To ensure that, route all packets for the 10.4.2.0/24 network
toward the tunnel.

• For Host V, we route such packets to VPN Server.
• Add the following routing entry to Host V:

29

• Ping Host V from Host U and we see
the following result:

• The following figure shows the packets generated when we ping Host V
(192.168.0.6).

Testing VPN: ping Testing

30

Packet Flow from Telnet Client to Server

31

SEED Labs 14

10.0.20.100

Internet

Telnet Program

TCP Port

VPN Program (Point A)

tun0 UDP Port

Kernel

IP
TCP

Data

Routing

IP
TCP

Data

eth1

IP
TCP

Data

Encrypt

New IP

UDP
IP

TCP

Data

New IP

UDP
IP

TCP

Data

VPN Program (Point B)

IP
TCP

Data

IP
TCP

Data

Decrypt

eth1

UDP Port
tun0

IP
TCP

Data

Telnet 10.0.20.100

Routing

Kernel

NIC Card

` `

10.0.20.101

eth2

IP: 10.0.4.1 => 10.0.20.100
New IP: 209.164.131.32 => 128.230.208.97

10.0.4.1 10.0.5.1

209.164.131.32 128.230.208.97

How packets flow from client to server when running “telnet 10.0.20.100” using a VPN

NIC CardNIC Card

Data

(a) An Example of packet flow from telnet client to server in Host-to-Gateway Tunnel

10.0.20.100

Internet

Telnet Program

TCP Port

VPN Program (Point A)

tun0 UDP Port

Kernel

IP
TCP

Data

IP
TCP

Data

eth1

IP
TCP

Data

Decrypt

New IP

UDP
IP

TCP

Data

New IP

UDP
IP

TCP

Data

VPN Program (Point B)

IP
TCP

Data

IP
TCP

Data

Encrypt

eth1

UDP Port tun0

IP
TCP

Data

Telnet 10.0.20.100

Kernel

NIC Card

` `

10.0.20.101

eth2

IP: 10.0.20.100 => 10.0.4.1
New IP: 128.230.208.97 => 209.164.131.32

10.0.4.1 10.0.5.1

209.164.131.32 128.230.208.97

Routing

Data

How packets return from server to client when running “telnet 10.0.20.100” using a VPN

NIC Card NIC Card

(b) An Example of packet flow from telnet server to client in Host-to-Gateway Tunnel

Figure 5: An Example of Packet Flow in VPN.

32

SEED Labs 14

10.0.20.100

Internet

Telnet Program

TCP Port

VPN Program (Point A)

tun0 UDP Port

Kernel

IP
TCP

Data

Routing

IP
TCP

Data

eth1

IP
TCP

Data

Encrypt

New IP

UDP
IP

TCP

Data

New IP

UDP
IP

TCP

Data

VPN Program (Point B)

IP
TCP

Data

IP
TCP

Data

Decrypt

eth1

UDP Port
tun0

IP
TCP

Data

Telnet 10.0.20.100

Routing

Kernel

NIC Card

` `

10.0.20.101

eth2

IP: 10.0.4.1 => 10.0.20.100
New IP: 209.164.131.32 => 128.230.208.97

10.0.4.1 10.0.5.1

209.164.131.32 128.230.208.97

How packets flow from client to server when running “telnet 10.0.20.100” using a VPN

NIC CardNIC Card

Data

(a) An Example of packet flow from telnet client to server in Host-to-Gateway Tunnel

10.0.20.100

Internet

Telnet Program

TCP Port

VPN Program (Point A)

tun0 UDP Port

Kernel

IP
TCP

Data

IP
TCP

Data

eth1

IP
TCP

Data

Decrypt

New IP

UDP
IP

TCP

Data

New IP

UDP
IP

TCP

Data

VPN Program (Point B)

IP
TCP

Data

IP
TCP

Data

Encrypt

eth1

UDP Port tun0

IP
TCP

Data

Telnet 10.0.20.100

Kernel

NIC Card

` `

10.0.20.101

eth2

IP: 10.0.20.100 => 10.0.4.1
New IP: 128.230.208.97 => 209.164.131.32

10.0.4.1 10.0.5.1

209.164.131.32 128.230.208.97

Routing

Data

How packets return from server to client when running “telnet 10.0.20.100” using a VPN

NIC Card NIC Card

(b) An Example of packet flow from telnet server to client in Host-to-Gateway Tunnel

Figure 5: An Example of Packet Flow in VPN.

Packet Flow from Telnet Server to Client

Bypassing Firewalls using VPN

33

Bypassing Firewall using VPN: the Main Idea

• Send our Facebook-bound packets to the TUN interface towards VPN server
• VPN server will release our Facebook-bound packets to the Internet
• Facebook’s reply packets will be routed to the VPN server (question: why?)
• VPN server sends the reply packets back to us via the tunnel

34

Experiment: Network Setup

35

• Setup firewall to block User from accessing Facebook
• We run the following command to get the list of IP prefixes

owned by Facebook:

• We can also get IP addresses returned by Facebook’s DNS server
by running the following command (this IP address can change):
dig www.facebook.com

Setting UP Firewall

36

Blocking Facebook

Facebook becomes unreachable

One of the IP prefixes belong to Facebook

37

Bypassing the Firewall
• We add a routing entry to the user machine, changing the route for

all Facebook traffic. Instead of going through eth6, we use the TUN
interface:

• The Facebook-bound packets are going through our tunnel.
• The Facebook-bound packets are hidden inside a packet going to

the VPN server, so it does not get blocked.
• VPN server will release the packet to the Internet.
• Replies from Facebook will come back to VPN server, which will

forward it back to us via the tunnel.
38

Summary

• What is VPN?
• IP tunneling
• IP tunneling using TLS/SSL
– TUN/TAP interface

• Building a VPN using TUN/TAP interface
• Using VPN to bypass firewalls

39

