
SQL Injection Attack
1

Brief Tutorial of SQL
• MySQL: an open-source relational database management system
• Log in to MySQL

• Create a Database:
• “SHOW DATABSES” command: list existing databases.
• Create a new database called dbtest

2

SQL Tutorial: Create a Table
• A relational database organizes its data using tables.
• Create a table “employee” with seven attributes (i.e., columns) for the

database “dbtest”

o“USE dbtest” - let the system
know which database to use
as there may be multiple
databases

o“DESCRIBE” to display the
structure of the table

3

SQL Tutorial: Insert a Row
• INSERT INTO - to insert a new record into a table

• Insert a record into the “employee” table.

• We do not specify a value of the ID column (Primary Key) as it is
automatically set by the database.

4

SQL Tutorial: SELECT Statement
SELECT - retrieves information from a database
• the most common operation

Asks the database for all
its records, including all
the columns

Asks the database
only for Name, EID
and Salary columns

5

SQL Tutorial: WHERE Clause
• Uncommon for a SQL query to retrieve all records in a database.
• WHERE clause - set conditions for SQL statements

(e.g., SELECT, UPDATE, DELETE)

The above SQL statement only reflects the rows for which the predicate in
the WHERE clause is TRUE.

• Predicate
• a logical expression
• combined using keywords AND and OR

6

SQL Tutorial: WHERE Clause
• First query - a record with EID5001 in EID field
• Second query - records with EID=‘EID5001’ or Name=‘David’

7

SQL Tutorial: WHERE Clause
• If the condition is always True, then all the rows are affected by the SQL

statement

• This 1=1 predicate looks quite useless in real queries, but it will become
useful in SQL Injection attacks

8

SQL Tutorial: UPDATE Statement

• UPDATE - to modify an existing record

9

SQL Tutorial: Comments
MySQL supports three comment styles
• Text from the # character to the end of line is treated as a comment
• Text from the “--” to the end of line is treated as a comment.
• Similar to C language, text between /* and */ is treated as a comment

10

Interacting with Database in Web Application
• A typical web application consists of three major components:

• SQL Injection attacks can cause damage to the database.
oUsers do not directly interact with the database, but through a web server.
o If this channel is not securely implemented, malicious users can attack the

database.

11

Getting Data from User
• Example: a form where users can type their data.

Once the submit button is clicked, send out an HTTP request with the data attached

• HTML source of the above form

12

Getting Data from User
• HTTP GET requests - parameters are attached after the question mark in the URL
• Each parameter has a “name=value” pair and are separated by “&”
• For HTTPS, similar format, but encrypted data

• Once this request reached the target PHP script, the parameters inside the HTTP
request will be saved to an array $_GET or $_POST.

• Example: a PHP script retrieves data from a GET request

13

Connecting to MySQL Database
• PHP program connects to the database server before conducting query on

database using.
• E.g., mysqli(…) along with 4 arguments to create the database connection

14

How Web Applications Interact with Database

How Web Applications Interact with Database
• Construct the query string and then send it to the database for execution.
• The channel between user and database creates a new attack surface for the database.

15

SQL Injection Attacks

16

CardSystems Attack

17

CardSystems
• credit card payment processing company
• SQL injection attack in June 2005
• put out of business

The Attack
• 263,000 credit card #s stolen from database
• credit card #s stored unencrypted
• 43 million credit card #s exposed

Launching SQL Injection Attacks
• Everything provided by user will become part of the SQL statement.

Is it possible for a user to change the meaning of the SQL statement?
• The intention of the blank fields below is for the user to provide input data.

• Malicious user inputs
• eid = EID5002’ #
• password = a random string

18

Launching SQL Injection Attacks

• Everything from the # sign to the end of line is considered as comment.
The SQL statement is now equivalent to

• Now return the name, salary and SSN of the employee whose EID is
EID5002 even though the user doesn’t know the employee’s password.
• How to get all the records from the database without knowing all the EID’s?
• Create a predicate for WHERE clause so that it is true for all records.

19

Launching SQL Injection Attacks using cURL
• Using a command-line tool to launch attacks.

o Easier to automate attacks without a graphic user interface.
• Using cURL, we can send out a form from a command-line instead of from a web page.

• Will the above command work?
• No. In an HTTP request, special characters are in the attached data needs to be encoded

or they maybe mis-interpreted.
• In the above URL, we need to encode the apostrophe, whitespace and the # sign

20

Modify Database
• If the statement is UPDATE or INSERT

INTO, we will have chance to change
the database.

• Consider the form created for
changing passwords. It asks users to fill
in three pieces of information, EID, old
password and new password.

• When Submit button is clicked, an
HTTP POST request will be sent to the
server-side script
changepasswd.php, which uses an
UPDATE statement to change the
user’s password.

21

Modify Database
• Assume that Alice (EID5000) is not satisfied with her salary. She would like to increase her own salary

using the SQL injection vulnerability. How?

• By typing the above string in “New Password” box, we get the UPDATE statement to set one more
attribute for us, the salary attribute. The SQL statement will now look as follows.

• What if Alice does not like Bob and would like to reduce Bob’s salary to 0, but she only knows Bob’s
EID (eid5001), not his password. How can she execute the attack?

22

Multiple SQL Statements
• Damages are bounded because we cannot change everything in the existing SQL statement.
• It will be more dangerous if we can cause the database to execute an arbitrary SQL

statement.
• To append a new SQL statement “DROP DATABASE dbtest” to the existing SQL statement to

delete the entire dbtest database, we can type the following in the EID box

• The resulting SQL statement is equivalent to the following, where we have successfully
appended a new SQL statement to the existing SQL statement string.

• The above attack doesn’t work against MySQL, because in PHP’s mysqli extension, the
mysqli::query() API doesn’t allow multiple queries to run in the database server.

23

Multiple SQL Statements
• Execute two SQL statements using the $mysqli->query() API

• Error message after executing the code

• To run multiple SQL statements, one can use $mysqli -> multi_query() [not
recommended]

24

The Fundamental Cause

Mixing data and code
• SQL Injection attacks
• XSS attacks
• Attacks on the

system() function
• Format string attacks

25

Countermeasures: Filtering and Encoding Data
• Before mixing user-provided data with code, inspect the data. Filter out any character that may be

interpreted as code.
• Special characters are commonly used in SQL Injection attacks. To get rid of them, encode them.
• Encoding a special character tells parser to treat the encoded character as data and not as code.

• PHP’s mysqli extension has a built-in method called mysqli::real_escape_string(). It can be used to encode
the characters that have special meanings in SQL. The following code snippet shows how to use this API.

26

Countermeasures: Prepared Statement
• Fundament cause of SQL injection: mixing data and code
• Fundament solution: separate data and code.
• Main Idea: Sending code and data in separate channels to the database server. This way

the database server knows not to retrieve any code from the data channel.
• How: using prepared statement
• An optimized feature that provides improved performance if the same or similar SQL

statement needs to be executed repeatedly.
• Using prepared statements

• Send an SQL statement template to the database, with certain values called parameters left
unspecified

• The database parses, compiles and performs query optimization on the SQL statement
template and stores the result without executing it.

• Later bind data to the prepared statement

27

Countermeasures: Prepared Statement
The vulnerable version: code
and data are mixed together.

Using prepared statements, we separate code and data.

Send code

Send data

Start execution

28

Why Are Prepared Statements Secure?

• Trusted code is sent via a code channel.
• Untrusted user-provided data is sent via data channel.
• Database clearly knows the boundary between code and data.
• Data received from the data channel is not parsed.
• Attacker may hide code in data, but the code will never be treated

as code and thus not be executed.

29

Summary

• Brief tutorial of SQL
• SQL Injection attacks and how to launch this type of attacks
• The fundament cause of the vulnerability
•Ways to defend against SQL Injection attacks
• Prepared Statement

30

