
Lecture 1 - Logistics, Introduction to VMs
Office hours: proposed 3:05 - 4:35PM

Course Overview and Structure

Lectures will not be recorded
Lectures will primarily be on the board, rarely slides
No homeworks, no exams
I will occasionally post readings. These are for your own good. You should get the
book (Smith & Nair)
This course is purely project based. Your grade will be based on projects and on
participation
4 Projects

Emulation
HLL VMs
Hypervisor (System VMs)
Container Engine

If you’re a PhD student (or in other exceptional cases), the last project (containers) can
be substituted for a research project
After each project we will have short presentations/code review
Discussion of prereqs: C, OS, assembly, hopefully computer architecture
Course is still in development, so feedback welcome

Virtual Machines Intro

What is meant by virtualization? Recall from your OS class, e.g. virtual memory

Illusion of a (sometimes unlimited) physical resource with certain properties
We will see that for us to properly virtualize some resource (e.g. memory, a CPU, a
physical machine, or an abstract machine), we must adhere to an interface
Examples:

With virtual memory, we adhere to the interface of loads/stores with an address.
We make it appear as if each process has it’s own address space -> requires
hardware support (paging)
With a virtual CPU, the interface we adhere to is the ISA
With a virtualized system, we must also provide for the familiar interface of
chipsets, devices, bussees, etc.

Adhering to this interface allows us to achieve equivalence, something we’ll come
back to later
How we implement the interface can differ widely depending on our technique

Emulation: the visible effects are equivalent to what the user/program would

have normally seen, but we don’t really care about how that is achieved
Simulation: we are still implementing the same interface, but in simulation we
also care about the physical manifestation of the implementation. For example,
a virtual hard disk might actually model the timing of disk rotations and head
seeks, or we might actually simulate the gate delays on circuits used to
implement some other solid state device

In practice it is very difficult to make simulation efficient, limiting its real-
time applications

Virtualization: really includes both of the above. In some cases we can achieve
virtualization without either emulation or simulation if we have hardware support
(although you could argue that even that is a higher-order emulation)
Important to note that in any case, we are not necessarily mimicking real
hardware, we could also emulate non-existent or prototype hardware, or indeed
abstract hardware (as we’ll see)

Theoretical Underpinnings

Virtual machines go all the way back to Turing Machines
Recall what a Turing machine is (formal definition)
UTMs: TM which can read the transition function and input tape of another TM and
perform the associated actions
Any turing complete computer, we can simulate (virtualize) as long as the machine
we’re doing it on is also turing complete! This means that virtualization is very
powerful and general. If we wanted to, we could build a hypervisor in a finite Turing
Machine!

VM Taxonomy

Language VMs: emulate an abstract (not real) instruction set, implementing a language
Process VMs: VMs that runs as a processes on a host OS (in userspace). Language
VMs and System VMs can be Process VMs. Examples: QEMU, Java
Full System VMs: VMs which present the virtualization of an entire system (i.e. not just
a CPU, real or abstract)
Hypervisor: a virtual machine monitor (manager)

