Towards a Practical Ecosystem of
Specialized OS Kernels

Conghao Liu and Kyle C. Hale

linois Institute of Technology
{cliul 15@hawk,khale @cs}.iit.edu

ABSTRACT

Specialized operating systems have enjoyed a recent re-
vival driven both by a pressing need to rethink the sys-
tem software stack in several domains and by the conve-
nience and flexibility that on-demand infrastructure and
virtual execution environments offer. Several barriers ex-
ist which curtail the widespread adoption of such highly
specialized systems, but perhaps the most consequential
of them is that these systems are simply difficult to use.
In this paper we discuss the challenges faced by special-
ized OSes, both for HPC and more broadly, and argue
that what is needed to make them practically useful is a
reasonable development and deployment model that will
form the foundation for a kernel ecosystem that allows in-
trepid developers to discover, experiment with, contribute
to, and write programs for available kernel frameworks
while safely ignoring complexities such as provisioning,
deployment, cross-compilation, and interface compat-
ibility. We argue that such an ecosystem would allow
more developers of highly tuned applications to reap the
performance benefits of specialized kernels.

1 INTRODUCTION

Several recent trends have prompted a reopening of the
discussion on limitations of general-purpose OSes. In-
creasing hardware heterogeneity [45, 48] poses signifi-
cant challenges for system software aiming to support a
wide array of applications efficiently [32]. An increasing
diversity of applications means that a general-purpose
OS must be all things to all users, potentially sacrificing
well-matched abstractions and mechanisms. Predictable
operation and performance, while sometimes detrimen-
tal to resilience against exploitation [43], can be very
important for certain applications [36], but is often elu-
sive for general-purpose systems [10, 18, 34]. Unmet
needs for fine-grained task abstractions [37], e.g. to en-
able serverless computing [27], have sparked new special-
ized system designs such as ZygOS [41] and Amazon’s
Firecracker VMM. !

This project is made possible by support from the United States
National Science Foundation (NSF) via grants CNS-1718252 and CNS-
1763612.

Uhttps://firecracker-microvm.github.io/

Specialized OSes (SOSes) provide one avenue for ad-
dressing these challenges, where here we broadly con-
strue a specialized OS as one tailored for a specific work-
load or class of workloads. This includes library OSes,
Unikernels, and light-weight kernels. While they have
been discussed in the literature for many years [2, 6, 8,
33], their recent resurgence is in part due to the avail-
ability and ease-of-use of commodity virtualization soft-
ware and public cloud platforms like Amazon’s AWS and
Chameleon [20]. One of the early visions for virtualiza-
tion technology—namely, practical OS experimentation—
is now coming true. There is now a wide array of special-
ized OSes available today, from kernels designed for the
cloud such as OSv [23], Arrakis [39], and Mirage [31]
to OS designs to support language and hybrid parallel
runtimes [1, 15, 16, 19]. Many efforts focus on extreme
scalability at both the intra-node and inter-node level,
including Barrelfish [3], Andromeda [44], and Corey [7].
Lightweight kernels (LWKSs) specifically designed for
raw performance have been around in HPC for more
than a decade [13, 21, 28], and the HPC community
is now also looking at Unikernels [29], in addition to
multi-kernel and co-kernel approaches [4, 12, 38, 47].
Benefits of specialized kernels include their small size,
their performance, predictability, and in some cases secu-
rity. Unikernels and LWKSs can make virtualization more
attractive, as their execution environment can be more
hypervisor-friendly [24].

Despite their benefits, SOSes still face several chal-
lenges. The designers must make the decision whether or
not the kernel interface will retain POSIX compatibility
(or binary compatibility with, e.g. Linux), pick the right
abstractions for the target workload(s), and decide on
the right level of protection, among other issues. Special-
ization for its own sake is not necessarily a good idea,
and as work in the architecture community shows, strik-
ing a good balance between domain-specific design and
general-purpose abstractions can pay off [35]. Some of
these design points can (and should) be based on founda-
tional principles, but others require experimentation and
design iteration.

However, because SOSes often eschew the usual inter-
faces, and because their build toolchains and supported

https://firecracker-microvm.github.io/

hardware vary, they tend to be difficult to use®. This
difficulty, of course, impedes the progress of OS exper-
imentation and can discourage developers from getting
involved in kernel development.

While others have worked toward making the ker-
nels themselves easier to build [42], we contrast the
current state of affairs for writing a program for, e.g.
a Unikernel, with starting a new cargo project in Rust
(with several simple commands, you can easily initial-
ize/build/run your project. Package dependencies, compi-
lation dependencies will be automatically handled by the
cargo system)—starting from the outset with ecosystem
integration in mind.

We propose a new development model for SOSes
which is rooted in the idea of building an ecosystem for
OS kernels. Much like the public ecosystems built around
container images and virtual machine images have been
a boon to those technologies, we believe a sound devel-
opment model paired with a vibrant kernel ecosystem
will not only encourage developers to more actively ex-
periment with specialized OSes and Unikernels, but will
also make them a more practically useful tool.

A key research challenge for tools which support such
an ecosystem, however—especially for HPC—is the
preservation of performance gains given by the SOS.

2 MOTIVATION

While it is easier than it has ever been to build, debug,
experiment with, and deploy specialized OSes (e.g. us-
ing IaaS clouds, QEMU, IPMI, kgdb, etc.), writing pro-
grams for them is often very cumbersome, even when
the kernel maintains binary compatibility with a more
popular OS. We are currently involved in development
of an SOS kernel called Nautilus® which is designed to
be paired with high-performance, parallel-runtime sys-
tems [15, 16]. When writing (or porting) programs or
runtime systems for Nautilus, the developer currently has
to add invocation hooks into the kernel’s initialization
code and manually integrate their code into the kernel
build system. This is obviously cumbersome, as it re-
quires developers to modify a kernel codebase and in
some cases deal with the intricacies of its build system.

Building and running a program for OSv is simpler.
OSv has a convenient tool called Capstan which makes
writing and deloying new applications easier.

20ne could, of course, make the argument that this is true for any
OS, but commodity OSes with momentum in the community (with
industry and open-source support) have already by necessity built up
an ecosystem of support tools. Take, for example, the slow evolution
of the Multiboot2 standard (very useful for SOSes, but Linux does not
use it).

3https://github.com/hexsa-lab/nautilus

$> capstan package init \
—-—-name "java-example"
This command initializes a new Capstan app package
in the current directory. Then the user can start writing
code for the new program. Once finished, the user can

run:
$> capstan package compose \
-p Jjava-example

This command fuses the application and kernel into
a bootable OSv QCOW?2 image. To run it, we do the
following:
$> capstan run java-example \
-p gemu —-boot default

In addition to the convenience of developing and de-
loying new apps, OSv also provides scripts to help users
tailor, generate, or publish new kernel images to Cap-
stan, Google Cloud Storage, or Amazon AWS. However,
there is no way to integrate other specialized OSes, or
to use complicated deployment modes as discussed in
Section 4. Similar inspiration also comes from Rust. Con-
sider building a program with the Rust* programming
language. The Rust developers have developed a build
tool called cargo which allows programmers to write
code in a way that is amenable to testing and release. For
example, rather than writing a program and then manu-
ally preparing the code for release (e.g. by providing a
configure script and integrating with Autotools and
the GNU Build System), the Cargo system sets the pro-
grammer up from the start for releasing their code and
publishing it to an ecosystem of Rust packages®. The
below shows the series of invocations needed to create,
test, and publish a project using this system:

$> cargo new my-program
$> cd my-program
...development...

$> cargo build

$> cargo test

$> cargo package

$> cargo publish

This program could then be run (and performance
measured) in a specialized software environment, for
example using containers. Our vision is to combine these
approaches to promote an ecosystem of specialized OS
kernels, where steps above would correspond to writing
an application for a specific OS or a component of that
OS, and subsequently deploying that OS on virtual or
physical hardware. We claim such an ecosystem (and
systems to support it) should ideally meet the following
requirements.

“https://www.rust-lang.org/
Shttps://crates.io/

https://github.com/hexsa-lab/nautilus
https://www.rust-lang.org/
https://crates.io/

Build
1
App/kernel

Deployment ‘ @

client cloud

fusion
support
|
supponH e #
‘ M | |j spitvm [| | [iGrosH et f
Lot et | [F] west B
f
¥

iti e
fully virtualized partitioned VM partitioned HW °

Development

Composition

include [<mykernel/threads .h>

ro(d = 0; 0 < N; i) {
t[i] = kernel_launch_thread(foo, NULL);

=05 3 <Ny dee) {
kernel_join_thread(t[i1);

@ | kernrun -d splitVM -k kernelB -a appC

\‘ Specialized OS Image Repo

<9

C 1 | export

Kernel A

':/—(1}

Kernel B Kernel C

Discovery

Figure 1: Overview of our proposed model.

Discoverability: 1t should be easy for developers to
find kernels which fit their particular needs, for example
systems designed for application sandboxing (e.g. Draw-
bridge [40]), kernels for the cloud (OSv [23]), or kernels
for HPC (HermitCore [29], Kitten [28], IHK/McKer-
nel [12], Nautilus [15], mOS [47]). Ideally images would
be tagged and searchable. This would look very similar to
existing ecosystems for VM disk images (VMware’s vir-
tual appliance marketplace) or container images (Docker
Hub).

Ease-of-Use: When using a kernel image, it should
not be necessary for the developer to understand ker-
nel internals. Complexities of the build toolchain and
deployment should also be abstracted away by default
when possible. Advanced users, however, and developers
wishing to augment a kernel should be given the option.

Composability: Users should be able to build pipelined
workflows using different kernels deployed in different
ways. This allows users to build complex functionality
out of basic building blocks, where here the building
blocks are app/kernel invocations. This presents a chal-
lenge because (1) it requires a standard communication
substrate and messaging protocol between kernels and (2)
the deployment tool must be able to reconcile workflow
structure with the specific kernel invocations while maxi-
mizing parallelism. For example, one kernel invocation
might involve a multi-kernel approach which uses most
physical cores on the machine, while another might only
use a unikernel on a single physical core. The deploy-
ment tool then must play the role of job scheduler. For
(1), once the communication mechanisms are decided
uopn (e.g. IPIs with a page of shared memory), we can
force compilation of the kernel with a static library. How-
ever, OS developers still must provide hooks into this
communication library. For (2), we can leverage prior
art on job scheduling in heterogeneous systems and take
inspiration from workflow languages, e.g. Swift [46].

Customizability: Advanced developers should have
a way to rapidly modify existing parts of a kernel, con-
tribute their own components, test them, and deploy them
(much like cargo, as above). We contrast this with the
laborious process for building, testing, and deploying a
Linux kernel, which is mostly manual.

Performance: Systems involved (e.g. build tools and
deployment support runtimes) should have very little
performance overhead. This is critically important for
HPC applications running in a large-scale environment.

Figure 1 depicts an example of an app/kernel (e.g.
Unikernel) development workflow. Kernel images are
stored in a publicly searchable catalog (1). A devel-
oper then pulls one of these kernels down (2) to be-
gin working on a project. While this might just be one
invocation of a build tool, everything necessary to do
development for this particular kernel, such as kernel
headers, exported symbols, and other configuration and
metadata is pulled down transparently for the devel-
oper. The developer might specify a particular kernel
version or kernel configuration in this invocation (e.g.
pull nautilus:infiniband). Once the developer
has finished writing the app or kernel component, the
build toolchain is invoked to perform any necessary app
+ kernel compilation and linking (3). This might only be
necessary if using a kernel that does not include support
for separately compiled code and dynamic linking. Once
this is complete, the user can deploy the combination
in a variety of ways (4). We discuss these deployment
modes in more detail in Section 4. The output of one ker-
nel invocation can be composed with another to enable
pipeline-oriented workflows (5).

In addition to being able to pull existing kernel ver-
sions or configurations, developers should be able to
create their own (e.g. forks of existing images) either by
changing configurations or modifying the kernel code
directly. Once created they can be published in the public

catalog using the build tool (again, much like cargo pub-
lish). Mechanisms for easing the pain of debugging ker-
nel code (e.g. automatic linking of gdb stubs, IPMI/Red-
fish integration, and serial console support) should be
available as well.

3 DIVER

Driven by the requirements in Section 2, we developed
Diver, a prototype development, compilation, and deploy-
ment toolchain which aims to help users discover kernel
images, develop and deploy new applications, and tailor
and publish new kernel images.

Diver is a client-side tool which works in a similar
fashion to Cargo and Capstan, and which implements
a specialized kernel workflow as shown in Figure 1. It
can be used to search for kernels by tags based on users’
needs from a catalog server. Once the kernel name is
known, it can can be used to fetch the target kernel im-
age. Diver can also initiate an app/runtime development
environment based on the particular kernel. Diver au-
tomatically generates a Makefile template for the new
app, and downloads all necessary kernel files like head-
ers, symbol tables, and bootloader configurations. When
users are finished with development, Diver can help build
and boot the app using different deployment modes.

Diver also supports uploading new kernel images to
a catalog server. Kernel publishers must follow Diver’s
requirements, providing necessary scripts for generating
kernel images, configuring kernels, testing, and deploy-
ing applications. One of our primary goals with Diver is
to develop standard interfaces for development/manage-
ment tools aimed at specialized OSes. We take build and
deployment tools like Capstan and Cargo as inspiration
and strive to ease unnecessary burdens from developers
and users of these systems.

Figure 2 depicts a workflow using Diver. The user first
creates a development environment. They can then cre-
ate an app/kernel combination (which we call a "net")
using diver build. Finally, the user can deploy the
net using a chosen mode (in this case a partitioned VM)
with the "dive" command. While Diver currently sup-
ports just Nautilus and OSv, we plan to extend it to other
specialized OSes. Our Diver prototype and its code will
be freely available when this paper is published.

4 INTEGRATING DEPLOYMENT
MODES

Once a specialized kernel is built and made ready to boot
(paired with an application or runtime system), the user
then must choose how to run (deploy) it. Existing tools
simply launch the SOS in a VM, but for HPC systems,

$> diver init test
o]

new dev
environment

$> diver build test
[Net (test) successfully created “test.bin”]

new app/kernel
fusion
$> diver list nets
[Net ©: Nautilus 1id=0x98901 ..]
[Net 1: OSv id=0x89871 ..]

[Net 2: test id=0x1098 ..]

$> diver dive -in nautilus -d splitVM
nautilus-shell> i

new
deployment

Figure 2: An example workflow using Diver.

which might involve complex multi-kernel environments,
a simple VM-based deployment may not be sufficient.
We thus must support different ways of using the under-
lying hardware. When deploying with Diver, our goal
is to hide as of this complexity as possible by default,
but allow advanced users to customize the deployment.
For example, we put in place a sane default deployment
mode (e.g., fully virtualized), but the user can choose a
different mode for each app/kernel invocation. Users will
also be able to customize options for machine configu-
ration. For example, in a virtualized deployment mode,
users can choose attached devices, passthrough config-
urations, virtual disks, console options, etc. This will
be very similar to libvirt invocations (e.g. with virsh).
With native deployment modes, users will be able to spec-
ify resource partitioning (e.g. physical core distribution,
physical memory map, shared address space layout, etc.).

Figure 1(4) shows three possible modes of deployment.
We now describe these modes and outline how Diver
integrates with them.

4.1 Fully Virtualized

This deployment mode (left side of Figure 1(4)) puts the
specialized OS and app combination in its own virtual
machine. This is the most commmon model that many
specialized kernels support, especially Unikernels, which
are designed with paravirtualization (i.e. only virtio de-
vice drivers) in mind. Our current Diver prototype sup-
ports this model. Invocations are similar to libvirt tools,
and the backend hypervisor can be configured, e.g. gemu-
kvm [5, 22] or Palacios [28]. To support this deployment
mode, the specialized OS need only support automatic
shutdown (i.e., a kernel bootup, application invocation,
kernel shutdown sequence rather than an always-on mode

50)
Native ———
Virtual o

Multiverse

40

30

20

Runtime (s)

>N Q&K

3N N

& N B AN S

N AV R
© o &

&

SRS & &
&9 & &

Figure 3: Language shootout benchmark perfor-
mance with Racket runtime running native, in a vir-
tual machine, and a VM split between two OSes (us-
ing Multiverse).

of operation). This will ensure that several kernel invoca-
tions can be composed properly. Ideally the kernel would
also support debugging stubs for integration with Diver.

4.2 Partitioned VMs

In this mode (middle portion of Figure 1(4)), a virtual
machine is space-partitioned between two operating sys-
tems. One is a general-purpose OS (GPOS in the figure)
such as Linux. This OS serves the role of fielding for-
warded requests for functionality not supported by the
specialized OS. For example, a Unikernel with no filesys-
tem support might forward syscalls to the GPOS to be
serviced. This also gives the specialized kernel a way to
use devices while relying on the device drivers of the
GPOS (much like a Dom0O VM in Xen). Libra [1] first
used this mode for a JVM-specific kernel. Unlike a DomO
setup, however, the virtual cores and memory of the VM
are space-shared between the OSes. This gives an oppor-
tunity for more efficient communication and interesting
superpositions of OS state. We previously explored this
mode using Hybrid Virtual Machines (HVM), which al-
lowed us to share portions of the virtual address space
between kernels and run a user program in a split exe-
cution environment between the kernels [16]. Namely,
the "high-half" (kernel) of the address space are distinct,
and the "low-half" (user) of the address space is shared.
A runtime system called Multiverse [17] paired with an
HVM allows legacy parallel programs (for Linux) to be
automatically transformed to work with this model.

This type of deployment mode requires paravirtual
support (hypercalls) for communication between kernels,
and if state superpositions are to be supported, special
handling for them.

1000 160k
140k

800
120k
600 100k
80k

60k

number of calls

200 40k

20k

0
b e S @ St
q:;\\ NN \\‘« ‘{&‘{e’o JeGoGe e\%e\@ o @a‘\‘(\e‘\)’e&\%@\g O 5@“‘\5\6‘ «\a%@‘

(a) (b)

Figure 4: Histograms representing syscall invocation
trace for memcached and bzip2.

As we pointed out in Section 2, underlying deployment
modes should not introduce significant overheads for sys-
tems booted with Diver. Figure 3 shows a performance
comparison for the The Language Benchmarks Game for
the Racket language on an §-core AMD system. Here we
compare the performance of the benchmarks running on
Linux, running on a Linux VM, and a running on a ver-
sion of the Racket runtime system that has automatically
been ported to the partitioned VM mode using Multiverse.
There is little overhead (on the order of a few thousand
cycles), and this arises due to forwarding between kernels.
In general, an application or runtime’s heavy reliance on
the legacy (e.g. Linux) ABI will increase the number of
these forwarded events, and will thus affect performance.
As an example, Figure 4 shows a breakdown of a system
call trace for memcached (a) and bzip2 (b). Memcached
does has a more varied distribution of syscalls, but fewer
instances of these invocations. This indicates that for-
warding overhead would be minimal for this deployment
mode. Bzip2, however, has several hundred thousand in-
vocations of read () and write (). This benchmark
invocation runs for about two minutes, which means that
the overall performance may still be acceptable depend-
ing on forwarding overheads (usually on the order of
1000 psec for efficient shared memory communication).
A more complete analysis of forwarding events for this
type of deployment (specifically for scientific workloads)
can be found in [14]. While the performance of the under-
lying deployment mode is somewhat orthogonal to Diver
itself, we must ensure that Diver does not introduce any
further overheads, e.g. by scheduling kernel invocations
on top of one another, or by introducing interference by
space-sharing the machine inappropriately.

Based on the observation from our syscall breakdown
experiments, here we argue that one of the important
use cases of this partitioned VM model is incremental

porting of legacy programs. Porting existing applications
from Linux to another OS that is not ABI compatible
with Linux requires huge engineering effort. With the
help of this partitioned VM model, developers are able to
selectively rewrite the code related to those syscalls of the
biggest concern in terms of performance (e.g. epoll_wait
in Figure 4 (a)).

4.3 Partitioned Hardware

This mode (right side of Figure 1(4)) is similar to the
one discussed in the previous section, but allows the
cores, memory, and devices of the physical hardware to
be partitioned between a GPOS and a specialized kernel.
Lange et al. explored this model using the Pisces Co-
kernel architecture [38] and the XEMEM system for
efficiently sharing memory between kernels [25]. These
systems help to support efficient, in-node application
composition [9, 26]. The main requirement with this
mode is that the GPOS must support offlining cores,
and the specialized OS must support bootup in a special
software environment. Both kernels in this mode must
have some mechanism for inter-kernel communication
and memory sharing. Hardware for core isolation (as in
on the Blue Gene/L [11]) makes things easier.

S CHALLENGES AND FUTURE
WORK

While we have an existing prototype, realizing the ambi-
tious vision laid out in Section 2 will involve addressing
several challenges. First, we must integrate the more
complex (partitioned) deployment modes into Diver. We
must also add support for more specialized kernels, such
as [HK/McKernel and HermitCore. An ultimate goal is
to develop standard features and interfaces that kernels
must implement to fit in with the Diver system. Support-
ing efficient composition of app/kernel invocations (e.g.,
piping the output of one or several app/kernel invoca-
tion to another as shown in Figure 1(5)), where both the
app/kernel combination and the deployment mode may
vary, also presents a challenge. We also plan to extend the
deployment model to include support for heterogeneous
systems with various accelerators and devices.

6 RELATED WORK

UniK® from solo.io is the only tool we are aware of that is
similar to Diver. It serves as a glue between user applica-
tions and unikernels. UniK helps to compile application
source code into a unikernel (using lightweight bootable
disk images) and lightweight virtual machines rather

Ohttps://github.com/solo-io/unik

than traditional application binaries. It utilizes a simple
Docker-like command line interface, making building
unikernels as easy as building containers. UniK runs and
manages instances of compiled images across a variety
of cloud providers as well as locally using VMs.

Unlike Diver, however, UniK is primarily focused on
cloud environments. The following are some major dif-
ferences. (1) Performance is not the primary concern
for UniK. It only supports running the application in a
VM (either on cloud or locally). Diver supports three
different deployment models to allow the user to make
tradeoffs between performance and flexibility. (2) UniK
does not consider the composition of multiple kernel/app
combinations. (3) UniK focuses on the compilation (im-
age generation) process. It does not help in setting up
a sane development environment for the user, which in-
cludes searching for and downloading necessary uniker-
nel header files and preparing a default build toolchain.

EbbRT is a framework for building per-application
library operating systems [42]. It consists of a set of
components called Elastic Building Blocks (Ebbs) that
developers can extend, replace, or discard to construct
and deploy a particular application. EbbRT provides an
event-driven execution environment and a minimal ab-
straction over the hardware, allowing applications to di-
rectly interact with hardware resources. EbbRT splits
applications across both specialized and general-purpose
OSes. Thus, functionality (such as system calls) can be
offloaded. With this replaceable and modularized Elastic
Building Blocks design, EbbRT makes libOSes easier
to build. However, EbbRT does not target other types of
SOSes (e.g. lightweight kernels), and does not consider
different split execution environments. Furthermore, they
do not consider kernel discovery or kernel composition.

Jitsu [30] is a system for securely managing multi-
tenant networked applications on embedded infrastruc-
ture. Jitsu is similar to Diver in that they both helps to run
and manage unikernels in VMs, but they do not consider
disparate kernels or complex deployment modes.

7 CONCLUSIONS

Both pressing needs for rethinking the software stack and
the widespread availability of virtual, on-demand infras-
tructure have led to a resurgence of specialized operating
systems. We argue that now is the time to begin building
ecosystems for these SOSes to encourage experimenta-
tion and design iteration. We discussed requirements that
we believe tools to support this ecosystem should meet,
and we presented a prototype of such a tool called Diver
which we hope will be a step towards a specialized OS
ecosystem. While Diver currently supports deploying

https://github.com/solo-io/unik

SOSes on virtual infrastructure, we plan to extend the
toolchain to support more non-traditional deployment
modes including physically partitioned hardware and par-
titioned virtual machine environments. We further plan to
explore coordination between kernel invocations which
utilize different deployment modes.

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

G. Ammons, J. Appavoo, M. Butrico, D. Da Silva, D. Grove,
K. Kawachiya, O. Krieger, B. Rosenburg, E. Van Hensbergen,
and R. W. Wisniewski. Libra: A library operating system for a
JVM in a virtualized execution environment. In Proceedings of the
374 International Conference on Virtual Execution Environments,
VEE °07, pages 44-54, June 2007.

T. E. Anderson. The case for application-specific operating sys-
tems. In Proceedings of the 3" Workshop on Workstation Oper-
ating Systems, Apr. 1992.

A. Baumann, P. Barham, P. E. Dagand, T. Harris, R. Isaacs, S. Pe-
ter, T. Roscoe, A. Schiipbach, and A. Singhania. The Multikernel:
A new OS architecture for scalable multicore systems. In Pro-
ceedings of the 22" ACM Symposium on Operating Systems
Principles, SOSP 09, pages 29-44, Oct. 2009.

P. Beckman. Argo: An exascale operating system. http:/www.
mcs.anl.gov/project/argo-exascale-operating-system.

F. Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of 2005 USENIX Annual Technical Conference,
USENIX ATC’05, pages 41-46, Apr. 2005.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczyn-
ski, D. Becker, C. Chambers, and S. Eggers. Extensibility, safety
and performance in the SPIN operating system. In Proceedings
of the 15th ACM Symposium on Operating Systems Principles,
SOSP 95, pages 267-283, Dec. 1995.

S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, F. Kaashoek,
R. Morris, A. Pesterev, L. Stein, M. Wu, Y. Dai, Y. Zhang, and
Z. Zhang. Corey: An operating system for many cores. In Pro-
ceedings of the 8" USENIX Conference on Operating Systems
Design and Implementation, OSDI’08, pages 43-57, Dec. 2008.
D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the 15'% ACM Symposium on
Operating Systems Principles, SOSP 95, pages 251-266, Dec.
1995.

N. Evans, K. Pedretti, B. Kocoloski, J. Lange, M. Lang, and P. G.
Bridges. A cross-enclave composition mechanism for exascale
system software. In Proceedings of the 6* h International Work-
shop on Runtime and Operating Systems for Supercomputers,
ROSS ’16, June 2016.

K. B. Ferreira, P. Bridges, and R. Brightwell. Characterizing
application sensitivity to OS interference using kernel-level noise
injection. In Proceedings of Supercomputing, SC ’08, Nov. 2008.
A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus,
M. E. Giampapa, R. A. Haring, P. Heidelberger, D. Hoenicke,
G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-
Burow, T. Takken, and P. Vranas. Overview of the Blue Gene/L
system architecture. IBM Journal of Research and Development,
49(2):195-212, Mar. 2005.

B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa. On the scalability, performance isolation and device
driver transparency of the IHK/McKernel hybrid lightweight ker-
nel. In Proceedings of the 30* k JEEE International Parallel and

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

Distributed Processing Symposium, IPDPS 16, pages 1041-1050,
May 2016.

M. Giampapa, T. Gooding, T. Inglett, and R. W. Wisniewski.
Experiences with a lightweight supercomputer kernel: Lessons
learned from Blue Gene’s CNK. In Proceedings of Supercomput-
ing, SC ’10, Nov. 2010.

R. Gioiosa, R. W. Wisniewski, R. Murty, and T. Inglett. Ana-
lyzing system calls in multi-OS hierarchical environments. In
Proceedings of the 5t International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS ’15, June 2015.
K. C. Hale and P. A. Dinda. A case for transforming parallel run-
times into operating system kernels. In Proceedings of the 24th
ACM Symposium on High-performance Parallel and Distributed
Computing, HPDC 15, June 2015.

K. C. Hale and P. A. Dinda. Enabling hybrid parallel runtimes
through kernel and virtualization support. In Proceedings of
the 128" ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, VEE’16, pages 161-175, Apr.
2016.

K. C. Hale, C. Hetland, and P. A. Dinda. Multiverse: Easy conver-
sion of runtime systems into os kernels via automatic hybridiza-
tion. In Proceedings of the 14*" [EEE International Conference
on Autonomic Computing, ICAC’17, July 2017.

T. Hoefler, T. Schneider, and A. Lumsdaine. Characterizing the in-
fluence of system noise on large-scale applications by simulation.
In Proceedings of Supercomputing, SC 10, Nov. 2010.

G. C. Hunt and J. R. Larus. Singularity: Rethinking the software
stack. SIGOPS Operating Systems Review, 41(2):37-49, Apr.
2007.

K. Keahey, P. Riteau, D. Stanzione, T. Cockerill, J. Mambretti,
P. Rad, and P. Ruth. Chameleon: a scalable production testbed
for computer science research. In J. Vetter, editor, Contemporary
High Performance Computing: From Petascale toward Exascale,
volume 3 of Chapman & Hall/CRC Computational Science, chap-
ter 5. CRC Press, 1 edition, 2018.

S. M. Kelly and R. Brightwell. Software architecture of the light
weight kernel, Catamount. In Proceedings of the 2005 Cray User
Group Meeting, CUG’05, May 2005.

A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm:
the Linux virtual machine monitor. In Proceedings of the Linux
Symposium, pages 225-230, June 2007.

A. Kivity, D. Laor, G. Costa, P. Enberg, N. Har’El, D. Marti, and
V. Zolotarov. OSv—optimizing the operating system for virtual
machines. In Proceedings of the 2014 USENIX Annual Technical
Conference, USENIX ATC’ 14, June 2014.

B. Kocoloski and J. Lange. Better than native: Using virtualization
to improve compute node performance. In Proceedings of the
24 International Workshop on Runtime and Operating Systems
for Supercomputers, ROSS *12, June 2012.

B. Kocoloski and J. Lange. XEMEM: Efficient shared mem-
ory for composed applications on multi-os/r exascale systems.
In Proceedings of the 24" International Symposium on High-
Performance Parallel and Distributed Computing, HPDC ’15,
pages 89-100, June 2015.

B. Kocoloski, J. Lange, H. Abbasi, D. E. Bernholdt, T. R. Jones,
J. Dayal, N. Evans, M. Lang, J. Lofstead, K. Pedretti, and P. G.
Bridges. System-level support for composition of applications. In
Proceedings of the 5t International Workshop on Runtime and
Operating Systems for Supercomputers, ROSS 15, June 2015.
R. Koller and D. Williams. Will serverless end the dominance of
linux in the cloud? In Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, HotOS 17, pages 169-173, May

http://www.mcs.anl.gov/project/argo-exascale-operating-system
http://www.mcs.anl.gov/project/argo-exascale-operating-system

[28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

2017.

J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia,
P. Bridges, A. Gocke, S. Jaconette, M. Levenhagen, and
R. Brightwell. Palacios and kitten: New high performance operat-
ing systems for scalable virtualized and native supercomputing.
In Proceedings of the 24" IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS’10, Apr. 2010.

S. Lankes, S. Pickartz, and J. Breitbart. HermitCore: A uniker-
nel for extreme scale computing. In Proceedings of the 6* h
International Workshop on Runtime and Operating Systems for
Supercomputers, ROSS’ 16, June 2016.

A. Madhavapeddy, T. Leonard, M. Skjegstad, T. Gazagnaire,
D. Sheets, D. Scott, R. Mortier, A. Chaudhry, B. Singh, J. Ludlam,
J. Crowcroft, and I. Leslie. Jitsu: Just-in-time summoning of
unikernels. In /2th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 15), pages 559-573, Oakland,
CA, 2015.

A. Madhavapeddy, R. Mortier, C. Rotsos, D. Scott, B. Singh,
T. Gazagnaire, S. Smith, S. Hand, and J. Crowcroft. Uniker-
nels: Library operating systems for the cloud. In Proceedings of
the 18" International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS’13,
pages 461-472, Mar. 2013.

K. S. McKinley. The yin and yang of hardware heterogeneity: Can
software survive? In Proceedings of the Companion Publication
for the ACM SIGPLAN Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (Keynote),
SPLASH ’13, pages 1-2, Oct. 2013.

A. B. Montz, D. Mosberger, S. W. O’Malley, L. L. Peterson, and
T. A. Proebsting. Scout: A communications-oriented operating
system. In Proceedings of the 5*" Workshop on Hot Topics in
Operating Systems, HotOS 95, pages 58-61, May 1995.

A. Morari, R. Gioiosa, R. W. Wisniewski, F. J. Cazorla, and
M. Valero. A quantitative analysis of os noise. In Proceedings of
the 25" IEEE International Parallel and Distributed Processing
Symposium, IPDPS *11, pages 852-863, May 2011.

T. Nowatzki, V. Gangadhan, K. Sankaralingam, and G. Wright.
Pushing the limits of accelerator efficiency while retaining pro-
grammability. In Proceedings of the 22"¢ IEEE International
Symposium on High Performance Computer Architecture, HPCA
’16, pages 27-39, Mar. 2016.

K. Ousterhout, C. Canel, M. Wolffe, S. Ratnasamy, and S. Shenker.
Performance clarity as a first-class design principle. In Proceed-
ings of the 16* " Workshop on Hot Topics in Operating Systems,
HotOS *17, pages 1-6, May 2017.

K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin,
S. Ratnasamy, S. Shenker, and I. Stoica. The case for tiny tasks in

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

compute clusters. In Proceedings of the 14! h Workshop on Hot
Topics in Operating Systems, HotOS *13, May 2013.

J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti. Achieving
performance isolation with lightweight co-kernels. In Proceed-
ings of the 24" International Symposium on High-Performance
Parallel and Distributed Computing, HPDC 15, pages 149-160,
June 2015.

S. Peter and T. Anderson. Arrakis: A case for the end of the
empire. In Proceedings of the 14* h Workshop on Hot Topics in
Operating Systems, HotOS 13, May 2013.

D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinsky, and G. C.
Hunt. Rethinking the library OS from the top down. In Pro-
ceedings of the 16" International Conference on Architectural
Support for Programming Languages and Operating Systems,

ASPLOS’11, pages 291-304, Mar. 2011.
G. Prekas, M. Kogias, and E. Bugnion. ZygOS: Achieving low tail

latency for microsecond-scale networked tasks. In Proceedings
of the 26th Symposium on Operating Systems Principles, SOSP
*17, pages 325-341, Oct. 2017.

D. Schatzberg, J. Cadden, H. Dong, O. Krieger, and J. Appavoo.
EbbRT: A framework for building per-application library operat-
ing systems. In Proceedings of the 12t" USENIX Symposium on
Operating Systems Design and Implementation, OSDI 16, pages
671-688, Oct. 2016.

R. Sun, D. E. Porter, D. Oliveira, and M. Bishop. The case for
less predictable operating system behavior. In Proceedings of the
15" Workshop on Hot Topics in Operating Systems, HotOS *15,
May 2015.

N. Vasilakis, B. Karel, and J. M. Smith. From lone dwarfs to
giant superclusters: Rethinking operating system abstractions for
the cloud. In Proceedings of the 15*% Workshop on Hot Topics in
Operating Systems, HotOS ’15, May 2015.

A. Venkat and D. M. Tullsen. Harnessing ISA diversity: Design
of a heterogeneous-ISA chip multiprocessor. In Proceedings of
the 415 Annual International Symposium on Computer Archite-
cuture, ISCA ’14, pages 121-132, June 2014.

M. Wilde, I. Foster, K. Iskra, P. Beckman, Z. Zhang, A. Espinosa,
M. Hategan, B. Clifford, and I. Raicu. Parallel scripting for appli-
cations at the petascale and beyond. I[EEE Computer, 42(11):50—
60, Nov. 2009.

R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen.
mOS: An architecture for extreme-scale operating systems. In
Proceedings of the 4t International Workshop on Runtime and
Operating Systems for Supercomputers (ROSS 2014), pages 2:1—
2:8, June 2014.

M. Zahran. Heterogeneous computing: Here to stay. ACM Queue,
14(6), Dec. 2016.

	Abstract
	1 Introduction
	2 Motivation
	3 Diver
	4 Integrating Deployment Modes
	4.1 Fully Virtualized
	4.2 Partitioned VMs
	4.3 Partitioned Hardware

	5 Challenges and Future Work
	6 Related Work
	7 Conclusions
	References

